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Abstract Dendritic cells (DCs) within the skin are a
heterogeneous population of cells, including Langerhans
cells of the epidermis and at least three subsets of dermal
DCs. Collectively, these DCs play important roles in the
initiation of adaptive immune responses following antigen
challenge of the skin as well as being mediators of toler-
ance to self-antigen. A key functional aspect of cutaneous
DCs is their migration both within the skin and into lym-
phatic vessels, resulting in their emigration to draining
lymph nodes. Here, we discuss our current understanding
of the requirements for successful DC migration in and
from the skin, and introduce some of the microscopic tech-
niques developed in our laboratory to facilitate a better
understanding of this process. In particular, we detail our
current use of multi-photon excitation (MPE) microscopy
of murine skin to dissect the migratory behavior of DCs
in vivo.
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Multiphoton · Microscopy

Introduction

The skin is the largest organ in the body, and the home of a
vast array of leukocytes that serve as a Wrst line of defense
against invading pathogens. Among these leukocytes are
dendritic cells (DCs), which continuously migrate from the
skin to the draining lymph nodes (LNs) via the lymphatic
system, thereby fulWlling their role as sensors for the adap-
tive immune system (Hemmi et al. 2001; Silberberg-Sina-
kin et al. 1976). This continuous emigration also enables
skin DCs to serve other important functions, such as the
maintenance of tolerance (Huang and MacPherson 2001;
Waithman et al. 2007). Although lymphatic entry and
migration represent a fundamental aspect of DC (and T
cell) biology, we have only a limited understanding of the
dynamics and molecular mechanisms underlying these
processes. While genetic studies have identiWed a few
molecular candidates (and will undoubtedly uncover more)
without suitable tools for adequate visualization, we cannot
fully appreciate how DCs co-ordinate to achieve what is, by
deWnition, a highly dynamic process. Just as direct visuali-
zation signiWcantly facilitated our understanding of leuko-
cyte rolling, adhesion and transmigration through blood
vessels (Iparraguirre and Weninger 2003; Springer 1994;
von Andrian and Mackay 2000), advances in microscopic
techniques promise a far greater appreciation of leukocyte
migration into lymphatic vessels. This will be particularly
fruitful when utilized in conjunction with some of the
newly developed Xuorescent markers and transgenic
animals. With this comes the hope of greater improvements
in a variety of medical applications, particularly DC
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immunotherapy, in which it is well appreciated that DC
migration is quite poor (Figdor et al. 2004).

In this review, we discuss our current understanding of
the requirements for successful DC migration, particularly
from the skin to the draining LN via lymphatic vessels. We
also introduce some of the microscopic models and tech-
niques developed in our laboratory to facilitate a better
understanding of cutaneous DC behavior and other immune
functions within the skin, chieXy the use of multi-photon
microscopy.

Dendritic cells in the skin

Broadly speaking, the skin can be divided into two anatomical
compartments: The epidermis, a relatively thin layer of
cells composed primarily of keratinocytes, and the underly-
ing dermis, which is rich in collagen-producing Wbroblasts,
and the location of blood and lymphatic vessels. The epi-
dermis and dermis are separated by the basement mem-
brane, a complex mixture of proteins including laminin,
type IV collagen and proteoglycans that serve both as an
anchoring complex between the two skin compartments, as
well as a mechanical barrier against entry into the dermis.
DCs can be found in both regions, as Langerhans cells
(LCs) in the epidermis and dermal dendritic cells (DDCs)
in the dermis.

Langerhans cells, the Wrst type of DCs to be identiWed
and perhaps the best characterized (Jakob et al. 2001; Kis-
senpfennig et al. 2005; Romani et al. 1989; Ruedl et al.
2001; Stoitzner et al. 2002), are a homogenous population
of cells, typically found in tight association with the sur-
rounding keratinocytes. As a result, LCs exhibit a stellate
morphology and are largely sessile in the steady-state (Kis-
senpfennig et al. 2005; Ng et al. 2008a; Nishibu et al.
2006). LCs in mice turn over at a low rate in the steady-
state (Kamath et al. 2002; Merad et al. 2002), and these
cells are largely radio-resistant (Merad et al. 2002). Fur-
thermore, LC mobilization following inXammatory stimuli
is relatively slow, such that LCs reach draining LNs only
after 3–4 days (Kissenpfennig et al. 2005; Shklovskaya
et al. 2008).

Dermal dendritic cells are a heterogeneous cell popula-
tion, both in humans (Nestle et al. 1993; Angel et al. 2006;
Angel et al. 2007) and mice (Bursch et al. 2007; Ginhoux
et al. 2007; Poulin et al. 2007; Shklovskaya et al. 2008). In
contrast to LCs, DDCs display an amoeboid morphology
(Ng et al. 2008a), more characteristic of a migratory cell
(Gunzer et al. 2000). In the mouse, DDCs are replaced
every 10–15 days by bone marrow (BM)-derived precur-
sors (Iijima et al. 2007; Kamath et al. 2002; Liu et al.
2007). Furthermore, DDCs mobilize rapidly in response to
inXammation, arriving in draining LNs within »12 h of

stimulation, and peaking at 1–2 days (Kissenpfennig et al.
2005; Shklovskaya et al. 2008). Recently, a number of
groups have exploited the radiosensitivity of DDCs to more
clearly deWne this population. These experiments led to the
identiWcation of three distinct DDC subsets in mice, one of
which expresses langerin/CD207 (Bursch et al. 2007; Gin-
houx et al. 2007; Poulin et al. 2007; Shklovskaya et al.
2008). In terms of function, it is thought that both LCs and
DDCs are capable of capturing and presenting foreign and
self-antigen to naive T cells in vivo (Shklovskaya et al.
2008). However, it is unclear whether antigen presentation
to T cells by the diVerent DC subsets leads to distinct func-
tional outcomes during immune responses.

Dendritic cell migration

Dendritic cells, like all leukocytes, use amoeboid cell
migration mechanisms to traYc within peripheral and lym-
phoid tissues (reviewed by Friedl and Weigelin 2008).
Amoeboid migration is characterized by the acquisition of
cell polarity, which then drives the development of a lead-
ing edge followed by the cell body and a posterior tail
known as the uropod. Generally, polarization occurs in
response to migration-promoting factors such as chemo-
kines, which signal via G protein-coupled receptors (Thelen
and Stein 2008).

DC migration has been studied both in three-dimen-
sional (3D) matrices in vitro, as well as a number of organs
in vivo (Bousso and Robey 2003; Cavanagh and Weninger
2008; Gunzer et al. 2000; Kissenpfennig et al. 2005; Lam-
mermann et al. 2008; Lindquist et al. 2004; Mempel et al.
2004; Ng et al. 2008a). Depending upon the DC type stud-
ied and the speciWc microenvironment, migratory proper-
ties of DCs have been found to diVer quite considerably.
DC in epithelia, including the epidermis and intestine, are
immobile (Chieppa et al. 2006; Kissenpfennig et al. 2005;
Nishibu et al. 2006). Similarly, DC in the T cell zones of
LNs migrate at low speed (Lindquist et al. 2004). In con-
trast, we have recently demonstrated that DDCs are consti-
tutively motile, suggesting that they search the dermis for
the presence of intruding pathogens (Ng et al. 2008a, see
below).

Mechanistically, it was believed that migration of leuko-
cytes, including DCs, relied upon interactions between
surface receptors, such as integrins, and their ligands in the
extracellular environment. However, a recent study demon-
strated that DC locomotion occurred through alignment of
the cell body to surrounding cell surfaces and/or extracellu-
lar matrix (ECM) proteins independently of integrins
(Lammermann et al. 2008). Rather, cell movement is
achieved by “squeezing and Xowing” of the actin cytoskele-
ton, a process that appears to utilize weak-to-non-adhesive
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interactions and thus propels the DC along the path of least
resistance towards the polarizing agent (known as contact
guidance, Friedl et al. 1998; Friedl and Weigelin 2008;
Lammermann et al. 2008).

Lymphatic vessels

Lymphatic vessels are the structures through which lymph-
borne material, including soluble proteins and antigens,
migratory DCs and recirculating T cells, travel into LNs.
The draining function of the lymphatic system is important
for the maintenance of normal tissue homeostasis, as well
as in inXammatory situations, when there is increased Xuid
and cellular eZux (Ryan 1989; Schmid-Schonbein 1990).
In the skin (as in most organs), aVerent lymphatic vessels
begin as a plexus of lymphatic capillaries that drain intersti-
tial Xuid. These initial absorbing lymphatic vessels ulti-
mately converge into larger collecting ducts, such that only
a few vessels enter and terminate in the subcapsular sinus
of the draining LN (reviewed by Randolph et al. 2005).

Traditionally, lymphatic vessels were identiWed by elec-
tron microscopy, using the absence of luminal red blood
cells and abluminal pericytes as a means of distinguishing
them from blood vessels (Sleeman et al. 2001). The identi-
Wcation of speciWc lymphatic markers, such as podoplanin
(Breiteneder-GeleV et al. 1999; Weninger et al. 1999),
prospero-related homeobox 1 (Prox-1) (Wigle and Oliver
1999) and lymphatic endothelium-speciWc hyaluronic acid
receptor 1 (LYVE-1) (Banerji et al. 1999), has signiWcantly
improved our understanding of lymphatic vessel architec-
ture and function (Alitalo et al. 2005; Baluk et al. 2007;
Randolph et al. 2005).

DC emigration through lymphatic vessels

When considering skin DC mobilization, it is important to
separate the requirements for LC emigration from the epi-
dermis from those for DDC emigration. LC emigration to
draining LNs involves disassociation from neighboring
keratinocytes via the down-regulation of E-cadherin, pas-
sage through the underlying basement membrane (Bergst-
resser et al. 1980; Larsen et al. 1990), and entry into the
dermally located lymphatics (Lukas et al. 1996). In con-
trast, DDCs are already juxtaposed to dermal lymphatic
vessels. Thus, for example, while LC transmigration
through the basement membrane is reliant upon �6 integrin
binding to laminin (Price et al. 1997), this molecule is
unlikely to be required for DDC migration.

Leukocyte entry into lymphatic vessels occurs preferen-
tially at or near the blind-ended tips of the initial lymphatics
(Baluk et al. 2007; Randolph et al. 2005). This is an active

and selective process that not only requires the expression
of appropriate chemokine receptors, but probably also
expression of a number of cell surface and signaling mole-
cules that are only just beginning to be identiWed.

Chemokine receptors

Dendritic cell migration into lymphatic vessels is depen-
dent upon CCR7. A role for CCR7 in DC migration was
Wrst suggested by Lanzavecchia and colleagues following
the observation that human monocyte derived-DCs, when
stimulated with LPS or TNF�, upregulate this molecule,
along with CXCR4 and CCR4 (Sallusto et al. 1998). Fol-
lowing the generation of CCR7-deWcient mice, it soon
became apparent that CCR7 was essential for DC mobiliza-
tion to LNs from peripheral tissues (Forster et al. 1999; Ohl
et al. 2004). CCR7 recognizes the ligands CCL19 and
CCL21, which together coordinate the traYcking of both
DCs and T cells to, and within, secondary lymphoid organs
under both steady-state and inXammatory conditions
(reviewed by Forster et al. 2008). In mice, there exist two
copies of CCL21: CCL21-Leu (which contains a leucine
residue at position 65) and CCL21-Ser (which contains a
serine residue in place of the leucine residue) (Chen et al.
2002). Lymphatic endothelial cells express CCL21-Leu,
while CCL21-Ser is expressed by Wbroblastic reticular cells
within lymphoid organs (including thymus, LNs and
spleen) and by high endothelial venules (HEVs) in LNs.
CCL19 is primarily expressed by LN Wbroblastic reticular
cells (Chen et al. 2002; Vassileva et al. 1999; Weninger and
von Andrian 2003). In mice that have a naturally occurring
deletion of CCL21-Ser and CCL19 (paucity of lymph node
T cells, plt/plt), DCs are capable of entering lymphatics in
the skin, but accumulate in the superWcial cortex of draining
LNs (Mori et al. 2001).

It is worth noting that expression of CCR7 alone is not
suYcient to ensure responsiveness to CCL19 and CCL21.
Rather, CCR7 function is dependent upon intracellular
entry of calcium (Ca2+), and therefore relies upon addi-
tional molecules controlling Ca2+ levels. Prostaglandins,
particularly PGE2, have been shown to inXuence CCR
responsiveness, since the absence of prostaglandins during
anti-CD40-induced activation renders DCs unresponsive to
CCR7 ligands (Scandella et al. 2002). PGE2 appears to
exert this eVect by increasing intracellular levels of cAMP,
thereby increasing intracellular calcium Xux (Scandella
et al. 2002; Scandella et al. 2004). Similarly, the ADP-ribo-
syl cyclase CD38 and the Ca2+-activated nonselective chan-
nel TRPM4 (transient receptor potential melastatin 4) have
been shown to promote DC migration though modulation
of intracellular Ca2+ Xux (Barbet et al. 2008; Partida-
Sanchez et al. 2004). CCR7 function is also dependent on
MRP1 (multidrug resistance-associated protein 1), a
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membrane transporter that transports cysteinyl-leukotrienes,
which in turn promotes chemotaxis to CCL19 (Robbiani
et al. 2000). In addition, while CCR7 appears to be required
for DC migration to LNs, additional chemokine receptors
may further facilitate this process, particularly in inXamma-
tory conditions. Indeed such a role has been described for
CXCR4/CXCL12 (Kabashima et al. 2007).

Integrins

Relatively little is known about the requirement for adhe-
sion molecules in lymphatic entry of DCs. Reduced migra-
tion of LCs into draining LNs in ICAM-1-deWcient mice
suggested a role for integrin binding in the promotion of
DC emigration (Xu et al. 2001). It was concluded that the
lack of ICAM-1 expression by lymphatic endothelium was
responsible for this diminished traYcking, which pointed to
a role for DC expression of the �L�2/�M�2 integrins (the
counter receptors for ICAM-1) (Xu et al. 2001). In further
support of this notion, Johnson et al. (2006) subsequently
observed a reduced percentage of Xuorescent DCs in drain-
ing LNs of oxazolone-treated mice following pre-treatment
with anti-ICAM-1. Anti-VCAM-1 was also eVective, sug-
gesting an additional role for DC expression of �4�1 inte-
grin (the counter receptor for VCAM-1) in lymphatic entry,
at least during inXammation (Johnson et al. 2006). How-
ever, a recent report demonstrated that integrin expression
by BM-derived DCs was not required for successful migra-
tion into the draining LN parenchyma following injection
into mouse footpads (Lammermann et al. 2008). Indeed,
the authors presented compelling evidence that leukocyte
migration within 3D matrices in vitro as well as in the der-
mis in vivo occurred in the absence of integrin interactions
with the extracellular environment, arguing against their
role as force transducers (Lammermann et al. 2008). Never-
theless, it is conceivable that other adhesion molecules,
such as the hyaluronan receptor CD44, are involved in DC
migration within and from the skin (Weiss et al. 1997).

Metalloproteinases

It has been shown that LC emigration from skin explants
requires the matrix metalloproteinases MMP-2 and MMP-9
(Ratzinger et al. 2002), which are likely to be involved in
promoting migration through the basement membrane by
cleavage of ECM proteins, particularly collagen IV
(Kobayashi, 1997). Consistent with this role, MMP-9 medi-
ates DC migration through tight junctions in vitro (Ichiyasu
et al. 2004). A further role was proposed for MMP-2 and
MMP-9 in the migration of both LCs and DDCs within the
dermis by “making a path” through the extracellular matrix
(Ratzinger et al. 2002). This conclusion is somewhat in dis-
agreement with other reports, which suggest that leukocytes

are capable of migrating through most environments with-
out the need to degrade the surrounding ECM (Wolf et al.
2003).

Other molecules

Recent reports have pointed to additional molecules
involved in leukocyte migration through lymphatics. Jam-
A¡/¡ DCs showed an increase in random motility and in the
capacity to transmigrate across lymphatic endothelial cells
(Cera et al. 2004), possibly through reduced interactions
with �L�2 integrins (Ostermann et al. 2002). Van et al.
(2006) recently reported a requirement for DC expression
of CD47 for successful homing, although the mechanism
remains unknown. In addition, lymphatic endothelial cell
expression of macrophage mannose receptor (Marttila-Ichi-
hara et al. 2008) and CLEVER-1 (Salmi et al. 2004) has
been identiWed to mediate lymphocyte binding, although a
role in DC migration has yet to be determined. Sphingo-
sine-1-phosphate is required for T cell entry into lymphat-
ics (Ledgerwood et al. 2008), but its function in DC
emigration is yet to be evaluated.

Dendritic Cell Maturation

Another aspect of DC emigration through lymphatic ves-
sels is their maturation state, originally coined to describe
the acquisition of antigen presenting capacity by DCs
following incubation in culture (Larsen et al. 1990). The
term DC maturation has come to encompass a variety of
biological processes that are triggered by Toll-like recep-
tor ligands and other microbial products, as well as inXam-
matory cytokines (reviewed by Trombetta and Mellman
2005). Thus, the hallmarks of maturation are: a reduction
in endocytic capacity, upregulation of Major Histocompat-
ibility Complex II (MHC-II) and co-stimulatory mole-
cules, release of immunostimulatory molecules and
changes in chemokine receptor expression, including the
upregulation of CCR7.

Studies of DC maturation have given rise to two major
paradigms. Firstly, it is assumed that all DCs in peripheral
tissues, including the skin, are “immature” in the steady-
state (Romani et al. 1989), a notion that has been extended
to include splenic DCs and their counterparts in LNs (Wil-
son et al. 2003). By extension, this notion groups LCs and
DDCs together functionally, despite clear diVerences in
turnover time (Garg et al. 2003; Kamath et al. 2002),
migration kinetics (Kissenpfennig et al. 2005; Shklovskaya
et al. 2008) and co-stimulatory molecule expression (Shk-
lovskaya et al. 2008). Secondly, it is thought that “imma-
ture” DCs are tolerogenic, while “mature” DCs are
immunogenic (Steinman et al. 2003).
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With regards to cutaneous DCs, these paradigms present
somewhat of a paradox, since migration and maturation
were traditionally linked together (de Vries et al. 2003;
Weinlich et al. 1998). However, part of the prevailing para-
digm of “immature” DCs serving a tolerogenic purpose
necessitates that maturation be uncoupled from migration
(Banchereau and Steinman 1998; Jiang et al. 2007), so that
“immature” DCs in the skin can still reach draining LNs.
This raises the question of what drives LC and DDC
emigration from the skin during the steady-state. Ample
experimental evidence shows that both LCs and DDCs
migrate continuously from the skin to the draining LNs
under non-inXammatory conditions, as shown by BrdU
uptake (Kamath et al. 2002), BM chimeric experiments
(Merad et al. 2002), and studies utilizing parabiotic mice
(Liu et al. 2007). While the precise mechanisms underlying
this phenomenon remain to be determined, a recent study
by Mellman and colleagues has described a distinct path-
way of DC maturation that can occur in the absence of
inXammatory signals (Jiang et al. 2007). Rather, BM-
derived DC maturation was induced through the disruption
of E-cadherin-mediated contacts (Jiang et al. 2007). It
remains to be seen whether such a mechanism plays a sig-
niWcant role in DC migration in vivo.

DC vaccination

Based on advances in the generation of DCs for therapeutic
purposes, a number of clinical trials over the past decade
have employed DC vaccination as a treatment for a variety
of cancers, particularly melanoma (Lesterhuis et al. 2008;
Ridgway 2003). Typically, this involves the in vitro genera-
tion of DCs from blood monocytes or CD34+ precursor
cells using cytokines such as GM-CSF and IL-4, followed
by activation using various inXammatory mediators and
antigenic loading prior to intradermal (i.d.) or subcutaneous
(s.c.) administration. Although a number of variations in
DC culture techniques, activation methods and antigen
choices have been tested, clinical responses following such
“DC vaccination” approaches have been rather disappoint-
ing (Lesterhuis et al. 2008).

One explanation for the ineYciency of DC vaccines is
that, both in man and mice, less than 5% of inoculated DCs
actually reach the draining LN (Adema et al. 2005; de Vries
et al. 2003; Eggert et al. 1999). Furthermore, there is an
apparent diVerence in the migratory eYciency of distinct
DC subsets. We have found that »1% of CD8¡ splenic
DCs reach the LN following s.c. injection into the footpad
of mice, whereas CD8+ DCs do not appear to migrate at all
(Smith and Fazekas de St Groth 1999) (Fig. 1a), implying
that most of the injected DCs remain within the skin
(Fig. 1b).

Central to all DC inoculation protocols is the underlying
expectation that the procedure, at least partially, recapitu-
lates the natural process of DC emigration. However, the
obvious discrepancy between the excellent migratory ability
of DDCs and the exceedingly poor migratory ability of i.d.
or s.c. administered DCs (whether they be in vitro or ex
vivo derived) illustrates that we still do not fully understand
the requirements for successful homing of these cells to the
draining LN. Currently, it is believed that this migratory
ineYciency is due to inadequate or poorly timed activation/
maturation (Andrews et al. 2008; de Vries et al. 2003; Lest-
erhuis et al. 2008). However, as discussed above, there are
clearly other factors that inXuence DC emigration (Adema
et al. 2005). The failure of CD8+ splenic DCs to home to
draining LNs, for example, occurs even when these cells
are activated with lipopolysaccharide (LPS) (Mempel et al.
2004) and express CCR7 (Fig. 1c). Thus, there is a need for
further dissection of the behavior of DCs at the inoculation
site, with an emphasis on the roles of some of the afore-
mentioned molecules in mediating their emigration.

Given that endogenous DDCs are in fact constitutively
motile cells (Ng et al. 2008a) and can mobilize and emi-
grate to draining LNs within a few hours of stimulation, it
is unlikely that DCs derived from other sources behave in a
similar manner when injected into the dermis. Thus, we
should focus our eVorts on determining the molecular cues
directing the locomotion of LCs and DDCs in the skin to
decipher the sequence of steps involved in entry into
lymphatics. Our data point towards the involvement of che-
mokine receptors in DDC navigation in the steady-state, as
pertussis toxin treatment of mice resulted in a signiWcant
decrease in the displacement of these cells (Ng et al.
2008a). Further studies are required to unravel the nature of
chemoattractants involved in this process.

LCs and DDCs in the skin in vivo: lessons from confocal 
microscopy

Most studies of the migratory behavior of DDCs have
focused on their migration from skin explants in vitro.
There is very little data on the behavior of DDCs within
their natural microenvironment in vivo. This is somewhat
in contrast to LCs, which have been more extensively stud-
ied, due to the relative ease by which they can be isolated
and imaged (Jakob et al. 2001; Kissenpfennig et al. 2005;
Nishibu et al. 2006; Ruedl et al. 2001; Stoitzner et al.
2002).

One of the problems in studying DDC behavior has been
the diYculty in identifying them histologically. Although
DCs in the mouse are generally deWned by expression of
CD11c, in practice the surface expression levels of this
marker in the skin are low, which makes identiWcation of
123
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CD11c+ cells problematic. In contrast to CD11c, DDC
expression of MHC-II is much higher and more readily
identiWable by sectional and whole-mount immunostaining.
However, MHC-II is also expressed by macrophages, a
more abundant cell population in the skin (Dupasquier et al.
2004). Thus, distinguishing non-migratory macrophages
from DDCs becomes a tedious task histologically, often
requiring the use of multiple markers (Dupasquier et al.
2004). Furthermore, identiWcation of DDCs by Xow cytom-
etry is equally troublesome, since it is diYcult to release
these cells into solution without the use of enzymes such as
dispase or trypsin, which frequently cleave CD11c.

A notable advance in the Weld has been the generation of
transgenic (Tg) mice in which enhanced yellow Xuorescent
protein (EYFP) expression is driven by a CD11c promoter
(hereafter referred to as CD11c-EYFP Tg mice) (Lindquist
et al. 2004). DCs in these mice exhibit high Xuorescence,
and are readily identiWable by both Xuorescence micros-
copy and Xow cytometry. These mice have not only greatly

improved our understanding of the behavior of endogenous
DCs in the LN (Lindquist et al. 2004; Shakhar et al. 2005),
but also their roles in various models of infection (Aoshi
et al. 2008; Hapfelmeier et al. 2008; Veres et al. 2007).
They also enabled the visualization of intestinal DCs (Flo-
res-Langarica et al. 2005) and the identiWcation of a previ-
ously uncharacterized population of DCs in the brain
(Bulloch et al. 2008). In the skin of these mice, both LCs
and DDCs express the transgene (although expression is
generally higher in DDCs compared to LCs), and can there-
fore be identiWed with minimal sample preparation (Ng
et al. 2008).

Confocal microscopy of whole mount preparations of
ears from CD11c-EYFP Tg mice has enabled us to charac-
terize the distribution of DCs within the skin. LCs within
the epidermis are distributed relatively evenly, at a concen-
tration typically counted as 1,000–1,200 LCs/mm2 (Ratzin-
ger et al. 2002). In contrast, DDCs assume a non-random
distribution within the dermis, where they are found as

Fig. 1 Poor migratory capacity of s.c. injected splenic DCs. a Shown
is the relationship between the number of CD8+ or CD8– splenic DCs
injected s.c versus the number of DCs recovered in the draining LN
20–24 h later. Squares represent CD8+ DCs, and triangles represent
CD8– DCs. b Left panels: representative Xow cytometry dot plots of
distal and draining LNs from a mouse that received 2 £ 106 DiO-la-
belled, “mixed” splenic DCs 24 h after s.c. injection into the left hind
footpad. Right panel: Xow cytometry of the footpad of the same mouse:
Viable (DAPI¡) CD45+ DiOhi cells—most likely representing the in-
jected DCs—were readily detected, indicating that these DCs had not
died or “disappeared” from the site of injection. c Analysis of CCR7

expression by splenic DCs in response to LPS in vitro and in vivo. Left
panels: freshly isolated splenocytes were incubated for 3 h at 4 or
37°C, in the presence or absence of LPS (10 ng/ml) before staining and
examination by Xow cytometry. Both CD8¡ and CD8+ subsets of
splenic DCs (gated on DAPI exclusion, forward scatter, CD11c expres-
sion, B220 exclusion and diVerential CD8 expression) expressed min-
imal levels of CCR7 when maintained at 4°C, but were capable of
upregulating CCR7 when incubated at 37°C. Right panel: mice were
injected i.v. with 25 �g of LPS and their spleens were harvested 4 h lat-
er for analysis by Xow cytometry. Both CD8¡ and CD8+ DCs upregu-
lated CCR7 in response to LPS
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single cells or within clusters of 20–40 cells (Fig. 2). As a
result, the relative density of DDCs varies considerably,
depending on the area examined, from 100 DDCs/mm2 in
some of the sparser regions, to 2,500 DDCs/mm2 within
clusters. This makes estimation of overall DDC density
diYcult, although it seems clear that there are at least twice
as many LCs as DDCs/mm2 of skin.

The origin and function of the DDC clusters is currently
under investigation, although they do not appear to be asso-
ciated with lymphatic vessels (Fig. 3a). We draw this con-
clusion because, although the lymphatic vessels within the
skin are usually within 150 �m of each other, and are thus

never far from any anatomical structure, these clusters do
not appear to aggregate around the blind-ended tips that
serve as the preferential site of leukocyte entry (Fig. 3b). It
is possible that they represent sites of preferred entry and/or
proliferation of DC precursors, but this remains to be deter-
mined. It is also possible that some of these cells are not
DCs, but rather DC-precursors, since it has been shown that
pre-DCs in the spleen express CD11c prior to diVerentia-
tion into bona Wde MHC-II+ DCs (Diao et al. 2006; Naik
et al. 2006).

These results show that DCs are a prominent population
of leukocytes in the skin. It is noteworthy that while DDCs

Fig. 2 Confocal imaging of 
DDCs within the skin of a 
CD11c-EYFP Tg mouse. Mouse 
ears were mechanically sepa-
rated into dorsal and ventral 
halves, and the epidermis was 
enzymatically removed using 
dispase. The entire dermal tissue 
was then optically sectioned 
(from the epidermal side) and a 
maximum-intensity, extended 
focus image generated. EYFP+ 
DDCs were scattered throughout 
the dermis as single cells or 
within tight clusters. Boxes 1–6 
DDC clusters. Scale bar 1 mm
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are half as frequent (or less) as LCs, they are three times as
abundant within the skin-draining LNs (Shklovskaya et al.
2008). Thus, the degree of cellular Xux through the dermis
in the steady-state greatly exceeds that of the epidermis.
This is consistent with studies of DC lifespan, which report
a complete replacement of DDCs by BM-derived precur-
sors within 2 weeks (Iijima et al. 2007; Kamath et al. 2002;
Liu et al. 2007), while only 20–60% of LCs turn over in
this same period (Henri et al. 2001).

Technical diYculties associated with conventional 
microscopy techniques

Despite the relative ease of DDC identiWcation in CD11c-
EYFP Tg mice, there are still a number of components of
the skin that make imaging these cells diYcult by conven-
tional Xuorescence or confocal microscopy. The most obvi-
ous hurdle is the depth. Unlike LCs, that sit prominently in
the epidermal layer, DDCs lie further below the surface of
the skin (from 20 to 200 �m). And since the skin is an opti-
cally dense tissue, the reduced penetrance of laser light in
the visible range due to absorption/scattering hinders the
clear identiWcation of these cells. Although it is still possi-
ble to image some way into the dermis using confocal
microscopy, this requires a high laser power, which
increases the probability of tissue damage. Furthermore, the
image quality rapidly diminishes at greater penetration
depths (Fig. 4).

Secondly, while the most eYcient immunostaining is
achieved on frozen sections, this provides only a 2D view,
and makes it diYcult to place the cells into anatomical con-
text. Whole mount staining provides a signiWcant advance-
ment over this technique, since it enables much better

orientation of skin cells within their 3D environment. How-
ever, whole mount immunostaining is not without its limi-
tations. For example, the epidermis is relatively impervious
to antibody, thereby restricting antibody penetration. Simi-
larly, other components underlying the dermis (cartilage,
muscle, fat) can also restrict antibody penetrance. One solu-
tion to these problems is to enzymatically remove the epi-
dermis prior to staining and/or imaging (see Fig. 2).
However, as noted previously, this may result in the loss of
certain cell surface antigens, such as CD11c. Furthermore,
one runs the risk of disrupting the microarchitecture of the
remaining tissue, introducing staining artifacts related to
higher “non-speciWc” binding of antibody as well as
increased autoXuorescence.

Ultimately, despite the impressive resolution provided
by confocal microscopy, in this setting it is unsuitable for
intravital imaging of DDCs. This is of considerable impor-
tance when examining DDC migration both within the skin
and through lymphatics, since not only is DC migration a
dynamic process, but the draining function of the lymphatic
vessels is reliant upon intact circulation.

Multi-photon excitation microscopy

The development of multi-photon excitation (MPE)
microscopy has provided unprecedented insight in many
research Welds, including immunology, by enabling
dynamic visualization of cells within their natural microen-
vironment deep underneath the surface of organs. In the
past 5 years, a plethora of reports from various groups have
described the cellular dynamics of immune cells during pri-
mary and eVector phases of immune responses (e.g. Bousso

Fig. 3 Confocal imaging of lymphatic vessels within the skin of a
CD11c-EYFP Tg mouse. Mouse ears were mechanically separated
into dorsal and ventral halves, and the cartilage-free half was incubated
overnight in rat anti-LYVE-1 followed by washing and a further 1 h
incubation in anti-rat-Alexa594. Tissue was imaged from the dorsal

side. a EYFP+ DDC clusters (yellow) did not appear to be associated
with lymphatic vessels (red). Scale bar 80 �m. b Few DDCs were ob-
served within the lymphatics, although they were occasionally found
associated with the lymphatic endothelial cells at the blind-ended re-
gions of the initial lymphatics (arrow). Scale bar 24 �m
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and Robey 2003; Lindquist et al. 2004; Mempel et al. 2004;
Mrass et al. 2006; Ng et al. 2008b). Furthermore, several
recent reports of direct visualization of host cell-pathogen
interactions add to these Wndings (Aoshi et al. 2008;
Chtanova et al. 2008; Ng et al. 2008a; Peters et al. 2008),
and illustrate the potential of MPE microscopy in unravel-
ing new (and old) questions in biomedical research. Despite
these advances, relatively little is known about the cellular
and interactive behavior of immune cells within the
peripheral, non-lymphoid organs such as the skin, although
this will undoubtedly change over the next few years.

For MPE, a femtosecond-pulsed, near-infrared laser
beam is generated by a tunable laser [usually Titanium
(Ti)–Sapphire, tuning range from approximately 700 to
1,020 nm] and utilized to excite Xuorophores. The Ti:Sap-
phire laser can also be coupled with a synchronously
pumped optical parametric oscillator (OPO), which can be
tuned to even longer wavelengths (approximately 1,080–
1,500 nm) for excitation of red and far-red Xuorophores
(Niesner et al. 2008). MPE microscopy features the follow-
ing advantages over conventional microscopy: (1) the
(near) infrared beam penetrates tissue better than visible
wavelengths used in conventional microscopy, thereby
enabling optical sectioning of living tissues up to several
hundreds of microns deep; (2) phototoxicity and photoble-
aching are reduced, permitting longer-term imaging of

living tissues; (3) MPE enables the simultaneous excitation
and detection of several Xuorophores with a single wave-
length due to the broad MPE spectra; (4) emission signals
from the sample can be detected in both forward (transmit-
ted) and backward (reXected) directions; and (5) compo-
nents of the ECM, i.e. �-helical proteins (e.g. collagen and
elastin), can be visualized without the need for Xuorescent
labeling due to second and third harmonic generation (SHG
and THG) signals (Friedl et al. 2007).

A MPE model for intravital imaging of mouse ear skin

In the past, the penetration limits of conventional micros-
copy have conWned real-time imaging of immune responses
in the skin to the study of leukocyte interactions with
microvessels (AuVray et al. 2007; Weninger et al. 2000),
and the behavior of cells within the epidermis (Kissenpfen-
nig et al. 2005; Nishibu et al. 2006). We have recently
established a model that permits intravital imaging of the
skin over relatively long periods of time (>4 h) by MPE
microscopy (Ng et al. 2008a). We have selected the dorsal
surface of the mouse ear as the imaging site, due to its
accessibility and the ease of avoiding respiratory move-
ments. Using this approach, we have been able to visualize
the migratory behavior of immune cells at the single cell

Fig. 4 Confocal imaging of in-
tact ear of a CD11c-EYFP Tg 
mouse. An intact mouse ear was 
imaged from the epidermal side. 
LCs within the epidermis dis-
played their characteristic stel-
late shape, while the DDCs 
exhibited a more amoeboid mor-
phology. EYFP+ DDCs could be 
observed as far as 100 �m below 
the epidermis, although the reso-
lution at this depth was greatly 
reduced. Scale bar 25 �m
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level, as well as their interactive behavior with their micro-
environment (e.g. ECM).

In the following section, we provide details on the experi-
mental setup for intravital imaging of mouse ear skin and
describe features that may be generalized to visualizing
other cell types/structures in the skin. In addition, we dis-
cuss some of the limitations of applying MPE for the
dynamic study of skin cells.

Animal preparation

After hair removal, the anaesthetized mouse is placed onto
a custom-built microscope stage (Fig. 5), the ear is
immersed in PBS/glycerin (70:30 vol:vol) and covered with
a coverslip. During these procedures, extreme care is taken
to avoid mechanical trauma that may result in the obstruc-
tion of blood Xow or inXammation. We have found that
even short periods of hypoxia as a result of an interrupted
blood Xow have signiWcant impact on the migration of cells
in the dermis, which is consistent with previous reports
showing migratory arrest of naïve T cells in LN after the
death of an experimental animal (Mempel et al. 2004).

Fig. 5 Schematic representation of a microscope stage for intravital
MPE imaging of mouse ear skin. This stage consists of: i a metal plat-
form that can be Wtted onto the microscope; ii a heating pad for main-
taining body temperature of the test animal at 37°C; and iii heating
elements that maintain the platform temperature at 36°C

Fig. 6 “Speckling” in the skin 
of melanin-producing mice dur-
ing multiphoton microscopy. 
SHG signal (blue) in the ear of a 
wild-type C57BL/6 mouse and 
an albino mouse carrying a 
mutation in tyrosinase (C57BL/
6-C2J) following MPE excitation 
at 840 nm. Laser power is indi-
cated in each Wgure. At high la-
ser power, high intensity signals 
are detected in all channels 
(white) in wild type, but not mu-
tant mice (even when laser pow-
er was doubled). Photomultiplier 
tubes captured SHG signals ei-
ther in the forward or reXected 
direction. Note that the resolu-
tion of individual ECM Wbers is 
superior in the forward direction. 
Scale bars 20 �m
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Since interstitial leukocyte migration within tissue is
dependent on temperature (Miller et al. 2002), the tempera-
ture of the ear platform is regulated independently and
maintained at 36°C, while the body temperature is kept at
37°C through a heating pad underneath the mouse. Body
temperature is monitored through a rectal probe.

Challenges associated with MPE imaging of mouse skin

A clear advantage of the ear skin model is accessibility and
the avoidance of potentially artifact-ridden surgical proce-
dures. However, even a relatively simple model is not with-
out pitfalls that require special considerations.

AutoXuorescence from hairs

Optimal imaging conditions are only achieved after hair
removal, given that hair is highly autoXuorescent and can
obscure eVective visualization of the cells/structures of
interest within the skin. Hair is removed using commer-
cially available depilation creams (e.g. NairTM Church &
Dwight). We have found no diVerence in the migration of
DDCs within ears with or without hair removal, indicating

that, when appropriately applied, this procedure does not
induce signiWcant disturbance of the microenvironment (Ng
et al. 2008a).

Pigmentation of mouse ear skin

A commonly observed phenomenon in the ear skin of pig-
mented mice, such as C57BL/6, is the occurrence of high-
intensity signals (“speckles”) from dermal cells that appear
in all collection channels and can reduce image quality
(Fig. 6). These speckles appear to arise from pigmented
cells, such as melanophages, since they are not present in
albino mice, including BALB/c and C57BL/6-C2J (albino
C57BL/6, Townsend et al. 1981), even at high laser power
(Fig. 6). Therefore, imaging in C57BL/6 mice must be per-
formed at lower laser power, which concomitantly results
in reduced tissue penetration and decreased resolution in
deeper regions of the skin.

Intracutaneous injection

Undoubtedly, a strength of dynamic intravital imaging is in
studying the consequence of applying reagents such as

Fig. 7 Multi-photon excitation for the identiWcation of anatomical
structures within the skin. a Two colour representation of collagen
Wbers (SHG) and cartilage (autoXuorescence) in a transverse frozen
section of mouse ear. Scale bar 25 �m. b–d Extended focus view of
images from MPE imaging of intact ear in vivo. b Dermal collagen

Wbres (SHG). Scale bar 15 �m. c Striated muscles (SHG). Scale bar
20 �m. d Cartilage (autoXuorescence). Scale bar 100 �m. Excitation
wavelengths used to detect each individual structure is indicated within
the Wgure
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inXammatory mediators or pathogens on the cells of inter-
est. However, the direct deposition of any substance into
the skin carries the risk that the mechanical trauma result-
ing from injection itself induces artifacts. Indeed, we have
found that larger injection volumes (particularly >5 �l)
cause a disruption in the local microenvironment of the ear
skin. This can lead to migratory arrest of DDCs even when
physiologic saline solution is injected into the skin. Conse-
quently, it is critical to use small injection volumes, i.e. 1–
2 �l, administered by means of a Hamilton syringe with a
33G needle.

Orientation within tissues

Since intravital imaging of intact tissues is performed in a
3D space, and often only a speciWc subset of cells is Xuores-
cently tagged, it is important to identify tissue “landmarks”
that facilitate orientation. This can, for example, be
achieved by the intravenous injection of Xuorescent dyes,
such as labeled dextran or Qdots. In addition, using the
right Wlter sets, it is possible to visualize sources of non-lin-
ear signals by virtue of SHG and THG (Friedl et al. 2007).
In the ear, connective tissue Wbers, striated muscle and car-
tilage can all be imaged by this means (Fig. 7). Thus,
because the epidermis is collagen-free, while the dermis is
densely composed of collagen, elastic and reticular Wbers,
we are able to distinguish epidermal and dermal compart-
ments simply based on SHG signals. It is noteworthy that
SHG signals generated from collagen Wbers have a distinct

scattering pattern, dependant upon their orientation. It has
been shown that vertically orientated collagen Wbers scatter
mostly in forward direction, while horizontally orientated
collagen Wbers scatter bi-directionally (Zipfel et al. 2003).
As shown in Fig. 6, this results in distinct reXected and
transmitted SHG signals in the mouse ear.

Choice of Xuorescent probes

Maximizing the potential for multi-parameter analysis in
vivo requires us to utilize the entire gamut of available Xuo-
rescent proteins. In this regard, the OPO provides a valu-
able extra dimension to MPE microscopy. Since the laser
wavelengths extend further into the infrared spectrum, the
OPO promises to not only enable greater penetration of
samples but also visualization of red and far-red Xuoro-
chromes. Thus, the Ti–Sapphire:OPO conWguration can be
used to excite lower wavelength targets and higher wave-
length targets simultaneously. We have conWrmed this
capability using EYFP plus Alexa594 (Fig. 8) or mCherry
(not shown), demonstrating the exciting possibility that the
OPO can be used for simultaneous excitation of a large
panel of Xuorescent probes.

DDCs are constitutively migratory

Using our MPE ear skin model in CD11c-EYFP Tg mice, we
have recently found that DDCs are, in contrast to immobile

Fig. 8 Comparison of confocal and MPE imaging in a tissue explant
of CD11c-EYFP Tg mice. Mouse ears were mechanically separated in
dorsal and ventral halves, and the cartilage-free half was incubated
overnight in rat anti-LYVE-1 followed by washing and a further 1 h
incubation in anti-rat Alexa594. Left: confocal imaging of EYFP+

DDCs (yellow) in association with LYVE-1+ lymphatic vessels (red).
EYFP was excited using the 514 nm line of a multi-line Argon Laser.
Alexa594 was exited using a 561 nm diode laser. Right: MPE imaging

of the same region. In addition to the confocal image, MPE diVers for
the visualization of ECM Wbers (blue). Simultaneous excitation of
EYFP and Alexa594 was achieved using a Ti–Sapphire laser tuned to
890 nm, coupled with a synchronously pumped OPO (tuned to
1120 nm). This ‘proof-of-principle’ experiment indicates that the OPO
can be utilized to simultaneously image GFP+ or YFP+ cells with other
cells/structures labeled with red and far-red Xuorophores, such as
mCherry or mKate
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LCs, constitutively migratory (Ng et al. 2008a). These cells
appear to migrate at a velocity of approximately 3 �m/min in
the absence of inXammation. However, after exposure to an
inXammatory signal such as LPS, or the presence of the para-
site L. major, DDCs cease to migrate for several hours, which
may facilitate the uptake of intruding microbes (Ng et al.
2008a). These results point to a fundamental diVerence in the
biology of interstitial DCs as compared to their epithelial
counterparts. Future studies will focus on the dynamics and
mechanisms of DC entry into the lymphatic system, and on
visualizing antigen transport from the skin to draining LNs.

Conclusion

Over the past few years, our knowledge of DC populations
has dramatically increased. Nevertheless, we still have an
incomplete understanding of the real-time behavior of LCs
and DDCs during inXammatory and infectious diseases, as
well as in skin neoplasms. In addition, we have only limited
information as to the mechanisms regulating the exit of
DCs from the skin. MPE microscopy is a promising new
technology for unraveling many of these unanswered ques-
tions. Although there are a number of technical diYculties
associated with skin imaging, they are not insurmountable.
Provided the appropriate precautions are taken, meaningful,
functionally relevant data can be obtained. Thus, we antici-
pate that the model described above will reveal further
insights into not only DC biology, but also a range of
immunological processes within the skin.
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