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Abstract Tissue Microarrays facilitate high-throughput
immuohistochemistry; however, there are key bottlenecks
apparent in their analysis, particularly when conducting
microscope-based manual reviews. Traditionally Tissue
Microarray assessments were performed using a micro-
scope where results were either transcribed or dictated and
subsequently entered into Xat-Wle spreadsheets. This pro-
cess is labour intensive, prone to error and negates the
advantages of the high-throughput Tissue Microarray for-
mat. In addition, human interpretations of staining intensity
parameters are highly subjective and therefore prone to
inter- and intra-observer variability. The advent of Virtual
Slides has permitted the review of tissue slides across the
Internet. In addition, this new technology enables the crea-
tion of software solutions to assist in the manual and auto-
mated review of Tissue Microarrays, through the use of
computer aided image analysis. There are numerous aca-
demically developed and commercially available applica-
tions which assist in Tissue Microarray reviews;
functionality of these systems range in complexity and

application domains. The review which follows describes
these systems and outlines technical considerations to be
assessed when deciding on a Tissue Microarray workXow
solution.
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Introduction

Immunohistochemistry is a well-established and versatile
technique which is routinely used in molecular and surgical
pathology (Kononen et al. 1998; Cregger et al. 2006).
Immunohistochemistry allows for the identiWcation and
localisation of cell-bound antigens and can be performed on
numerous cells and tissue preparations (Fejzo and Slamon
2001). The technique is widely used due to its relatively
low cost, availability of materials in routine pathology
laboratories and relatively rapid turnaround (Conway et al.
2006). The greatest advantage of immunohistochemistry is
that it allows the interpretation of histomorphology to dis-
cern the complexity of expression patterns which cannot be
determined from methods that rely on the extraction of bio-
molecules (Hewitt 2006). However, recent advances in
molecular biology have centred on increases in throughput
and quantiWcation of biologic phenomena. No longer is
experimental design focused on one gene or one protein,
but rather on tens to hundreds of genes, proteins or tissue
on analytical platforms (Macbeath 2002). Therefore, the
application of immunohistochemical analysis on full-face
sections as a means of biomarker validation is increasingly
being replaced with Tissue Microarray analysis.

Tissue Microarrays (TMAs) provide high-throughput
histomorphologic examination of tissue by means of
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arranging multiple tissue samples in a uniform structure on
a paraYn wax block. Large amounts of tissue samples are
analysed simultaneously based on Xuorescence in situ
hybridisation (FISH) for genetic rearrangements, RNA in
situ hybridisation for genetic expression, or immunohisto-
chemistry for protein overexpression (Kononen et al. 1998;
Kallioniaemi et al. 2001; Bubendorf et al. 2001). The tech-
nology was developed by Kononen et al. (1998) in order to
facilitate gene expression and copy number surveys of large
cohorts of tumours. Due to the nature of TMA construction
which allows multiple sections to be obtained from a single
TMA block, rapid analysis of hundreds of molecular mark-
ers on the same cohort of specimens is possible (Moch et al.
2001). TMAs provide substantial value in rapidly transla-
ting genomic and proteomic information into clinical appli-
cations (Torhorst et al. 2001). When initially created,
TMAs were envisioned to make a dramatic impact on basic
cancer research and anatomic pathology (Moch et al.
2001); in ten years since TMAs inception this hypothesis
has been realised through various studies. TMAs have
numerous beneWts over full-face analysis including uniform
experimental conditions, conservation of scarce tissue and a
reduction in the volume of reagents used (Simon and Sauter
2002; Al Kuraya et al. 2004; Milanes-Yearsley et al. 2002;
Hoos and Cordon-Cardo 2001).

However, at best, manual immunohistochemical analy-
sis of TMAs is a semi-quantitative technique. In addition,
large amounts of tissue and data are associated with TMA
reviews, and as a result bottlenecks in microscopic analy-
sis of TMAs have developed (Conway et al. 2006). With
the advent of Virtual Slides high-throughput manual analy-
sis of TMAs is possible. In addition image analysis of
TMAs provides a high-throughput, reproducible and quan-
titative means of analysing immunohistochemically
stained tissue. Assays for molecular quantiWcation have
been in existence for decades. In particular, popular tech-
niques include reverse transcriptase polymerase chain
reaction for quantiWcation of nucleic acids or antibody
based methods for protein quantiWcation (Camozzi and
Razvi 2004). A major drawback to these assays is that they
require maceration of tissues and cells to quantitatively
assess the amount of particular biomolecules present
which leads to loss of critical spatial information (Cregger
et al. 2006; Hewitt 2006).

The analysis of immunohistochemical staining patterns
usually measures speciWc single targets rather than the rela-
tively complex and intricate disease patterns, for example
those seen on haematoxylin and eosin staining, therefore
immunohistochemical studies are inherently amenable to
automated image analysis (Joshi et al. 2007). Sources of
variability in immunohistochemistry are numerous and
include Wxation conditions, specimen pre-treatment,
reagents, detection methods, and interpretation of results.

Although it is not possible to standardise all the potential
variables in immunohistochemistry, the interpretation of
immunohistochemical results may be standardised through
quantitative methods (Cregger et al. 2006).

In theory it is not challenging to quantitate the intensity
and area of brown staining using image analysis programs
(Braunschweig et al. 2004). However, in comparison with
other array platforms TMAs are not easy to analyse auto-
matically. Every slide is stained diVerently, depending on
the laboratory, procedure, stain type and from day-to-day.
In addition, every donor block may be Wxed diVerently,
which hugely impacts on the quality of staining obtained.
All imaging programs need to have the capability to be
manually adjusted to facilitate the diVerences in staining
conditions of each slide (Braunschweig et al. 2004). How-
ever, despite technical diYculties it has become crucial to
automate TMA analysis and provide methods to manage
and assess data in order to truly provide high-throughput
analysis (Braunschweig et al. 2004).

Automated immunohistochemical protocols in combina-
tion with a device that provides quantitative and objective
output, can dramatically improve the quality of the data
obtained from immunohistochemical studies (Cregger et al.
2006). It has been proposed that computer-based analysis
can quantify staining intensity more accurately and with
greater reproducibility than manual human-based assess-
ment (Weaver et al. 2003; Johansson et al. 2001). There are
numerous commercially available, computer-based systems
designed for the quantiWcation of immunohistochemical
staining. The aim of this review is to examine the applica-
tion of automated software solutions for the analysis of pro-
tein expression within TMAs. Particular emphasis will be
placed on the workXow and infrastructure required to pro-
vide a truly high-throughput automated image analysis
solution for TMA applications.

TMA technology

Kononen et al. (1998) Wrst illustrated the use of TMAs in
1998. The technique involves the excision of cores of
varying diameter (0.6–2.0 mm) from regions of histologi-
cal importance on donor tissue blocks and the subsequent
insertion of these excised cores into precise co-ordinates
on a recipient block. This process is repeated until a two-
dimensional matrix of cores is inserted into the recipient
block. Once the array is complete, sections can be cut
from the block, which are then available for any analysis
currently performed on full-face tissue sections. The most
commonly applied analysis to TMAs is immunohisto-
chemistry, with approximately 80% of all TMAs analysed
in this way (Braunschweig et al. 2004; Shergill et al.
2004).
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Tissue Microarrays greatly increase throughput of tissue
analysis. Analysis of prognostic and predictive markers had
traditionally been performed by testing one marker at a
time (Torhorst et al. 2001). However, utilising a single
TMA block containing 1,000 cores can potentially create
200 slides, and as many as 200,000 individual assays can be
performed (Shergill et al. 2004). Therefore, TMAs allow
serial selection analysis of multiple markers from the same
molecular pathway in a large number of tissue samples,
facilitating direct comparison of alterations of multiple
molecular targets in virtually identical histologically highly
conserved tumour regions (Wang et al. 2002).

Impact of TMA construction and staining 
on visual interpretation

The numerous challenges associated with immunohisto-
chemistry are often magniWed with the use of TMAs due to
small sample size of the tissue cores and the diversity of
Wxation and processing conditions of tissue originating
from diVerent sources (Braunschweig et al. 2004). Thus,
although immunohistochemistry is no more challenging on
TMAs than full-face sections, due to tissue originating
from diVerent sources TMA immunohistochemistry is more
likely to unmask deWcient protocols (Braunschweig et al.
2004).

Nonetheless, there are many advantages associated with
the use of TMAs in comparison with full-face sections.
TMAs introduce standardisation of protocols into histopa-
thology over and above what is possible with full-face sec-
tions (Tzankov et al. 2005), removing the inherent
variability in experimental conditions from batch-to-batch
analysis. With TMAs all tissue specimens arrayed on the
one slide are analysed in an identical fashion. Antigen
retrieval, reagent concentrations, incubation times with pri-
mary and secondary antibodies, temperatures and wash con-
ditions are identical for each core within a TMA, resulting in
an unprecedented level of standardisation which is unattain-
able utilising full-face techniques (Shergill et al. 2004).

However, sub-optimal immunohistochemistry in full-
face sections and TMAs can be caused by many factors
including poorly Wxed/prepared sections; incomplete sec-
tion drying or dewaxing; use of unclean xylene; insuY-
cient/excess antigen retrieval; inappropriate antibody
dilution; and non-speciWc staining due to endogenous tissue
elements. With regard to TMA analysis there are other spe-
ciWc issues that may aVect immunohistochemical staining
and interpretation. TMAs are susceptible to tissue loss due
to wash-oV following slide pre-treatments (dewax and anti-
gen retrieval), this can signiWcantly reduce the number of
cores available for interpretation. Therefore, it is imperative
that replica cores and core sizes are carefully considered

when constructing TMAs. For example, four 0.6 mm cores
from diVerent regions of a tumour may prove more repre-
sentative and reproducible than one 2 mm core from the
same tumour. In addition, loss of cores or miss-aligned
TMAs will also cause diYculties when de-arraying virtual
TMAs. De-arraying is the automated process of Wrstly iden-
tifying TMA spots within a virtual array and then subse-
quently associating each TMA spot with the corresponding
information from the TMA map.

Loss of cores can be signiWcantly reduced by utilising
adhesive slides which are subjected to baking at appropriate
temperatures or alternatively utilising tape transfer tech-
niques which have been found to reduce tissue loss. TMAs
containing tissue embedded from several diVerent centres
can cause problems at all stages of the TMA process, from
construction to IHC staining and interpretation. Disparity
can result from variance in Wxation and processing proto-
cols and even in the diVerent types of waxes used to embed
the tissue. Edge eVect and staining artifacts can also lead to
misinterpretation of peripheral cores. The occurrence of
edge eVect can be reduced by using irrelevant tissue cores
to form a “moat” around study cores; and by using auto-
mated immunohistochemical systems with on-board anti-
gen retrieval and appropriate tissue section coverage (e.g.
Leica Microsystems Covertiles or Ventana’s Liquid Cover-
slip) to prevent reagent evaporation.

The quality of TMAs hugely inXuences the data obtained
from image analysis, even more so than with microscope-
based assessments. While it is possible to identify irregular-
ities in the data obtained from image analysis, factors such
as edge eVect and folding of tissue are problematic for
interpretation, and will aVect the accuracy of automated
image analysis systems. Currently, image analysis systems
are not sophisticated enough to decipher edge eVect stain-
ing from actual staining of interest, unless regions of inter-
est are Wrst annotated and then processed. Therefore, edge
eVect may be incorrectly interpreted as positive staining. Of
a lesser concern is the occurrence of folded tissue, which
typically results in the over quantiWcation of protein expres-
sion. However, the occurrence of folded tissue can often be
identiWed within the image analysis results by utilising the
percentage of tissue present as a classiWer for eliminating
cores. In our experience, even the presence of tissue dye on
the circumference of full-face sections/TMAs hugely
aVects protein expression quantiWcation, by falsely inXating
the level of positive expression observed. Therefore, it is
imperative that TMAs are of a high quality; otherwise the
investment in image analysis systems is futile. In addition,
the presence of positive control tissue across all slides
within a single study is imperative where quantitative
image analysis will be applied. Positive controls can be uti-
lised to normalise the data, therefore variance in staining
protocols and background lighting can be eliminated.
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Manual interpretation of TMAs

Histopathology remains the gold standard for most diagno-
sis and therapeutic decisions in pathology. The interpreta-
tion of histologic sections however, is an inherently
subjective process based primarily on morphologic features
(Cregger et al. 2006). The bulk of cases usually lie between
where the research scientists can interpret the data; how-
ever, the quality of interpretation would improve with con-
sultation by a pathologist (Hewitt 2006). Traditionally,
human analysis has been considered the optimal method for
qualifying immunohistochemical staining. Due to the com-
plexity of tissue, the vast majority of TMAs continue to be
scored by the human eye. However, the ability to quantify
staining intensity by human analysis has produced varied
results and is inherently Xawed (Conway et al. 2006). In
addition, the quantiWcation of immunohistochemical stain-
ing is greatly inXuenced by the complexity of the immuno-
stain under assessment. Human analysis generally
quantiWes staining intensities into broad categories, rather
than assigning exact staining intensity values. At present,
alternative methodologies can accurately quantify protein
signal when performed in conjunction with computer-
assisted analysis, such as densitometry. However, in the
majority of instances immunohistochemistry remains the
primary technique utilised (Bartlett et al. 2003; Ellis et al.
2000, 2004; Hsi and Tubbs 2004; Hicks and Tubbs 2005;
Kay et al. 2004).

It has been proposed that human assessment of immuno-
histochemistry is considerably easier on TMAs compared
to full-face sections, due to the fact that it is possible to
compare staining intensities from diVerent specimens on
the same TMA. More importantly, interpretation is limited
to within a small predeWned area. Therefore, the area under
investigation is constant for all reviewers, unlike full-face
sections where diVerent reviewers will select diVerent areas
of importance. In addition, due to the fact that a cohort of
samples are typically analysed in a single review seating
whereas traditionally this would have involved multiple
seating’s (Tzankov et al. 2005; Zu et al. 2005). However,
observer variability is still evident in the manual assess-
ment of TMAs.

Observer variability can exist in three instances,
inter-observer variability, intra-observer variability and
inter-laboratory variability. Poor inter-laboratory agreement
is usually attributed to variability in tissue Wxation, tissue
processing, immunohistochemical protocols, antibodies
and scoring systems used in diVerent laboratories (Lacroix-
Triki et al. 2006). Intra-observer variability has been
reported as being less frequent than inter-observer variabi-
lity. It has been suggested that each pathologist adheres to
their own internal standards which in some cases, appear to
be consistently reproducible (Kay et al. 1994). Inter-

observer variability in relation to microscope-based
reviews of immunohistochemically stained tissue has been
well-documented in literature.

Inter-observer variability, when performing tumour
identiWcation, is hugely dependent on the type of tumour
assessed, the antibody under assessment and the standard
criteria available to identify the tumour in question (Schnitt
et al. 1992; Wei et al. 2004). In addition, inter-observer vari-
ability is hugely reduced when well-deWned classiWers are
in place, for example with the assessment of HER-2 protein
expression. The semi-quantitative categories used to clas-
sify HER-2 membrane staining are clearly deWned and are
based on intensity of staining, percentage and completeness
of membrane staining. As a result inter-observer agree-
ments when assessing HER-2 expression are greater than in
comparison with other membrane antibody assessments for
example E-Cadherin protein expression, where universal
well deWned classiWcations systems are not in place (publi-
cation in draft). Inter-observer variability is the greatest
problem associated with human-based microscope assess-
ment. Numerous factors are attributed to inXuencing human
interpretation of immunohistochemically stained tissue, and
therefore introducing inter- and intra-observer variability.
These factors can be broadly divided into a number of cate-
gories, which are brieXy described as follows:

Orientation

It is inherently diYcult to accurately track the location of
individual cores within complex TMAs when performing
microscope-based assessments. Reviewers often misplace
their orientation and become confused about their location
within the slide, which threatens the accuracy of the results
obtained. As mentioned previously, misplaced orientation
is often exacerbated by poorly created TMAs. For example,
TMA cores may be misaligned due to cores moving or
washing oV during the staining process. The orientation of
the array is also crucial when performing automated
de-arraying, as the origin of the array has to be known in
order to assign the row and column values and associated
the TMA spots to the TMA map. Typically control cores
are used within TMAs, not only for reference tissue for
review, but also for points of reference for orientation
within the array. Often distinctive tissue types are housed
within the array structure, therefore each row and column
are denoted by a diVerent tissue type.

Alternatively orientation spots are positioned outside of
the uniform TMA grid structure, in order to identify the
actual origin of the array. However, depending on the trans-
fer of the tissue from the microtome to the glass slide and
the actual size of the TMA, it is possible for eight diVerent
orientations of TMAs to occur, therefore causing confusion
when reviewing serial sections from one block. Figure 1
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illustrates the eight possible orientations of a TMA slide,
and the arrows within the images represent the orientation
in which the blocks were constructed.

Sequence of cores reviewed

Typically, the sequence in which the cores are reviewed can
also aVect reviewer’s perception of the tissue. For example,
pathologists are extremely knowledgeable when identifying
tumour and can clearly recognise cores generated from the
same biopsy, especially when the tissue is reviewed in
sequence. Perception of staining intensity will also be
aVected by the sequence in which the cores are reviewed.
Reviewers often rely on previously reviewed TMA cores to
form their opinion of subsequent cores. For example a
moderately stained core could be categorised as weak if the
core was reviewed following a series of strongly stained
cores, as human assessment is not a true value, rather a
form of “comparison” of colours. It can be argue that in
order to perform a totally impartial review, TMA cores
should be reviewed randomly. Others believe it is of beneWt
to review all cores from one biopsy in sequence, in order to
get an overall understanding of the tumour under review.

Workload and sample size

Pathologists are under increasing pressure to improve pro-
ductivity and, are therefore generating more data and
reviewing more slides. Tackling this workload manually

places a constant strain on time, resources, staV, and
Wnances. This burden is magniWed when reviewing TMAs
due to the volume of samples under analysis. In any Weld
of science dependent on observation, accuracy is essential.
However, it is well-documented that, after prolonged
visual study, eye and speciWcally cone-fatigue can signiW-
cantly aVect a person’s ability to discern colour changes
and identify unusual objects (Habib 2005). The TMA slide
format has compounded this eVect, and with densities
exceeding 500 TMA spots per slide, fatigue quickly
becomes an issue.

Management of data

Due to the sheer volume and small sample size of tissue
present on TMAs, there are diYculties in performing
immunohistochemical reviews using traditional micro-
scope-based assessments. Large amounts of data are associ-
ated with TMAs, ranging from information on the tissue
(patient information), to their construction, subsequent
staining and assessment. As a result of the large amounts of
data and the fact that microscope-based assessment typi-
cally relies on the manual entry of results Wrst onto a work-
sheet and then subsequently into a spreadsheet or database
system, accurate manual tracking of the TMA core data is
challenging, prone to human error and often leads to frus-
tration (Tubbs et al. 2007). Therefore, it is apparent that
applications to assist in pathologist’s reviews of TMAs are
required, ideally online object-orientated databases.

Fig. 1 Illustrates the eight possible orientations of a TMA. Once the
tissue is sectioned and transferred to a water bath, there are four possi-
ble orientations. However, if the section is inverted when being trans-

ferred to the water bath, another four orientations are possible. The
arrow within the images signiWes the direction in which the TMA col-
umns advance
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Scoring forms

The general parameters recorded during assessment of
immunohistochemically stained tissues using traditional
microscopes are intensity, localisation and the proportion of
cells of interest that meet the Wrst two criteria (Hewitt
2006). Human assessments can accurately and consistently
identify the presence or absence of disease and low or high
staining intensity. However, human assessment is not as
capable when utilising intermediate categories and huge
amount of variation is introduced as a result of over-using
the intermediate category available during reviews (Kay
et al. 1994).

Manual scoring systems are qualitative or semi-quantita-
tive in nature, either when performing virtual or micro-
scope-based reviews. Quantitative scales are either binary
(§) or normative (0, 1, 2, 3). Qualitative scales have limita-
tions in resolution which can be detected by eye, thus many
researchers build a simple scale, as 0, 1, 2, according to
negative, weak, strong (Braunschweig et al. 2004). Manual
review requires interpretative skills of well-trained investi-
gators and frequently the eVorts of a specialist primarily
pathologist. Staining patterns that are anticipated to be used
in clinical practice are usually scorable as positive or nega-
tive, whenever possible (Braunschweig et al. 2004). The
number and complexity of the categories used to record
immunohistochemical staining will aVect the levels of
inter- and intra-observer agreement.

Illumination

Apart from the quality of the microscope, the next most
important item in the reviewing process is the illumination
of the slides. Bulbs used in microscopes have a characteristic

tint; in general this is yellow or straw coloured. It has been
suggested that the bulb tint inXuences human perception of
staining intensity (Conway et al. 2006). If too much or too
little light is exposed, information about the intensity of
staining is lost. Adjustments in lighting settings from slide-
to-slide can introduce huge variability in the reviewing pro-
cess. Consistency of light between slides and reviews is
extremely diYcult during microscope-based assessments, as
tints and shades can appear to change from one setting or
context to another. Figure 2 illustrates an area of tissue
which was scanned using diVerent lighting exposure levels.
The digital image represents the appearance of tissue under
a microscope. Clearly, the perception of membrane staining
intensity is aVected by background lighting settings.

Human vision limitations

The accuracy of human vision is highly variable from per-
son-to-person and is an extremely complex process; it is
also hugely objective. The nature of the human eye is such
that every person sees an object slightly diVerently from the
way others see that same object, subjectivity in this regard
is therefore innate (Habib 2005). DiVerent observers may
report seeing diVerent features on the same object, as may a
single observer at diVerent times (Habib 2005). Visual
inspection can also be confounded by the inherently subjec-
tive nature of human observation, which is aVected by con-
text, for example the amount of tumour present,
background staining, and stromal staining (Camp and Div-
ito 2005). Numerous facts aVect human vision including
contrast, borders, and colour, and these aVects can be illus-
trated using a number of optical illusions.

Contrast is the local change in brightness and is deWned
as the ratio between average brightness of an object and the

Fig. 2 Represents an area of tissue scanned utilising two diVerent lighting exposure settings. Perception of membrane staining is hugely aVected
by the lighting exposure at which the slide was scanned. This is also evident and more prevalent with microscope-based analysis
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background brightness. The human eye is logarithmically
sensitive to brightness, implying that, for the same percep-
tion, higher brightness requires higher contrast (Sonka and
Boyle 1993). Apparent brightness depends very much on
the brightness of the local background; this eVect is called
“conditional contrast”(Sonka and Boyle 1993). Figure 3 (a
and b) illustrates the fallibility of human perception of con-
trast (Dodek 2007). Figure 3a illustrates a vertical bar with
a single colour throughout. When viewed with the contrast
of a white background the vertical bar is clearly a single
colour. However, when the vertical bar is superimposed on
a background with a changing gradient of colour, our per-
ception of the vertical bar has changed (Fig. 3b). Contrast is
extremely applicable in the assessment of membrane-bound
immunohistochemical staining. In cases where there is no
cytoplasmic staining, membrane staining will appear stron-
ger than in cases where cytoplasmic staining is present.

Object borders carry a lot of information. Boundaries of
objects and simple patterns such as circles or lines enable
adaptation eVects similar to “conditional contrast”. The
Ebbinghaus illusion illustrates how humans can misinter-
pret size of particles when displayed in relative compari-
sons (Plodowski and Jackson 2001). Figure 4a, b displays
two circles of the same diameter; however, as they are

surrounded by circles of diVerent diameters they appear to
have diVerent diameters (Sonka and Boyle 1993).

During the assessment of immunohistochemically
stained TMAs the comparison of colour is paramount. As
previously mentioned, manual review utilising a micro-
scope is based on comparisons of tissue rather than an inde-
pendent assessment of the true colour of the tissue under
review. The Bezold EVect describes how colours appear
diVerently depending on their relationship to other colours.
Figure 5 illustrates that the colour red appears lighter when
it is surrounded by a white border, and darker when sur-
rounded by a black border (Lockal 2007).

Contrast is extremely applicable in the assessment of
membrane-bound immunohistochemical staining. The con-
trast between membrane and cytoplasmic staining may be
hugely variable and can aVect human perception. Figure 6
A1 and B1 illustrates two images of bladder tissue probed
with the antibody for E-cadherin. The two images have
equivalent membrane staining intensity when quantiWed by
computer-aided image analysis. The areas identiWed as posi-
tive for membrane staining by image analysis are high-
lighted in green (Fig. 6 A2 and B2). However, the
membrane staining intensity appears signiWcantly diVerent
within the two images when assessed by human review,

Fig. 3 a Single coloured bar against white background. b Illustrates the identical vertical bar as in Fig. 3a. However, within this Wgure the vertical
bar is surrounded by a background with a changing gradient of colour. As a result, the vertical bar no longer appears the same colour throughout
123



454 Histochem Cell Biol (2008) 130:447–463
Wrstly due to the diVerential tumour morphology, and sec-
ondly due to the presence of cytoplasmic staining within
image 6A1. Figure 6 illustrates how both size and contrast
aVects human perception of staining intensity.

Virtual microscopy

Virtual Slides is a term used to describe the digitisation of
traditional glass slides. Virtual Slides overcome problems
attributable to sampling bias and interpretation resulting
from limited Weld selection, allowing telepathologists to
navigate to any Weld of view, at magniWcations comparable
to that of a conventional microscope, using images of suY-
cient resolution to render a correct diagnosis (Costello et al.
2003). In this technique, a conventionally prepared glass
slide is placed on a microscope with a motorised stage and
an automatic focusing facility or alternatively a specialised

scanning device. The slide is scanned using a 10£, 20£ or
40£ objective lens and these images are integrated to pro-
duce a single large image Wle. This Wle can then be viewed
on any computer with a virtual microscope interface where
a user can press keys to change magniWcation from an over-
all low-power view up to the resolution at which it was
scanned (Cross et al. 2002). Virtual Slides provide users
with similar functionality of a microscope, but with numer-
ous additional beneWts, including concurrent access for
multiple users, tracking of review movements and image
annotation.

Advances in new technologies for complete slide digiti-
sation in pathology have allowed the development of a
wide spectrum of solutions for full-face slide scanning
(Rojo et al. 2006 Vicente). Typically, acquisition devices
can be broadly categorised based on their modes of action,
of which three currently exist. Firstly, Weld of view devices
which digitise slides based on capture of many small

Fig. 4 Ebbinghaus illusion 
illustrates how the interpreta-
tions of the size of objects are 
relative to their surroundings. 
The red circle within image a 
and b are identical; however, 
perception of the size of the red 
circle is altered by the blue cir-
cles surrounding them

Fig. 5 Bezold EVect illustrates 
how the appearance of colour is 
altered by the colours that sur-
round them. In this case, the col-
our red appears lighter when 
surrounded by white, and darker 
when surrounded by black 
Watanabe (2007)
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regions of the slide via a microscope with a traditional
charged coupled device (CCD) mounted camera. The
numerous images are then stitched together to create one
large digital image. Numerous providers utilise Weld of
view technology within their instruments, for example,
Olympus dotSlide (Olympus UK Ltd), 3DHistech Ltd
(Hungary) and Genetix (formally Applied Imaging, UK).
Secondly, linear array devices which capture a small num-
ber of contiguous overlapping image stripes (Aperio-Tech-
nologies 2008). Linear array devices continuously move the
microscope slides during image acquisition, therefore,
facilitating rapid slide digitisation and seamless images.
The key providers which use linear array devices are Ape-
rio (Aperio Technologies, Inc., USA) and Hamamatsu
(TDI-CCD technology, Hamamatsu Photonics, UK).
Finally, area array scanners utilise many objectives rather
than one and therefore, can digitise large areas faster than
when using traditional Weld of view devices. At present
Dmetrix Inc, (USA) are apparently the only vendor utilising
this technology.

A number of new technologies are developing in the
Weld of virtual microscopy. Hybrid scanners which provide
numerous additional functionalities in addition to bright-
Weld scanning are beginning to emerge. Extended depth-of-
Weld and multi-focal scanners are broadening the domain of
virtual microscopy to cytology applications for example
cytology. Currently, Hamamatsu provides a scanner that is
capable of multi-focal plane scanning, whereas 3DHistech
provide a scanner that can facilitate extended depth-of-Weld

scanning. In addition, the development of optical projection
tomography (OPI) microscopy which facilitates the 3D
imaging of biological specimens facilitates the mapping of
multiple proteins distributions within the same tissue
(Sharpe 2008). Currently, Bioptonics (MRC Technology,
UK) claim to provide a scanner that can generate OPI
images under 30 min.

The memory requirements for storing a digitised full-
face slide/TMA is dependent on the area of tissue being
scanned, the optical resolution (magniWcation) it is scanned
at and the image Wle format/compression algorithm used for
its storage. Typically, full-face scanning of a single stan-
dard paraYn-embedded slide (18 £ 22 mm) at an optical
resolution equivalent to 40£ requires up to 1–1.2 GB of
storage. Storage of up to 250–300 MB is required while
scanning at an optical resolution equivalent to 20£. In
order to calculate the storage requirements for a project for
1 year estimate the approximate number of slides to be
scanned at a particular resolution. For example 1,000 slides
at 40£ = (1,000 £ 1.2 GB) » 1.2 TB. As a baseline for
most projects it is recommended that suYcient storage be
provided for at least 3 years. It is also important to consider
redundancy/backup requirements for image data.

Due to the size of the images, specialist viewer software
must be used in order to view Virtual Slides. Numerous
software applications are available which facilitate distribu-
tion of images, locally and via the Internet. Image viewers
typically facilitate the viewing and panning of Virtual
Slides, however more complex functionality, for example

Fig. 6 Both images A1 and B1 have equivalent membrane staining intensity when assessed by image analysis; however the intensity appears
diVerent when assessed by eye. Within images A2 and B2 the green colouring represents the positive membrane staining assessed by image analysis
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annotations and analysis is outside the scope of typical
image viewers. The majority of commercially available
image viewers are provided by the scanner vendors in con-
junction with the hardware. For example, Aperio provide
ImageScope, and Hamamatsu provide NDI Viewer. How-
ever, each of these viewers are vendor speciWc and there-
fore do not support alternative vendors Wle formats. As a
result, collaboration with institutes utilising alternative
scanners would require additional software. There are some
image viewers that have non-priority formats, for example
Zoomify Inc. (USA). Zoomify Droplet is a Macromedia
Flash application which uses the original scanned image as
an input and converts it into a set of JPEG image tiles. This
tileset, once uploaded to a webserver, can be displayed via
the Internet using the Zoomify embedded object within a
conventional web page (Conway et al. 2006). Typically,
image viewers are only used to verify the quality of the
scan.

Utilising Virtual Slides it is possible to overcome some
of the problems experienced when performing microscope-
based TMA reviews. Uniform lighting conditions can be
achieved across many TMAs when scanning slides. This
eliminates the possibility of variance of interpretation due
to background lighting. Integrating Virtual Slides within
TMA workXow software facilitates the integration of TMA
review data with the digital image of the TMA slide. The
sequence in which cores are reviewed can be customised,
which in return reduces sample bias. Finally, by using auto-
mated image analysis systems which are quantitative and
produce continuous data sets, the elimination of categorised
assessments in what is continuous data can be eliminated.
High-throughput automated image analysis systems also

reduce workloads, compensate for limitations in human
vision, and as a result reduce inter- and intra-observer
variability. Figure 7 illustrates the limitations of micro-
scope-based assessments, and the solutions that virtual
microscopy provides.

Software workXow solutions for TMAs

The development of TMAs has signiWcantly increased the
throughput of tissue analysed using immunohistochemistry,
compared to more traditional full-face methods. Initial TMA
studies were uni-dimensional, one stain, hundreds of sam-
ples. Management of the data could be easily recorded with a
simple spreadsheet. In some instances this remains true, such
as when a TMA is used to conWrm a “hit” from a microarray
experiment (Braunschweig et al. 2004). However, studies are
now applying multiple stains to a single TMA or series of
TMAs, generating large and complex datasets. Datasets with
clinical outcome and epidemiologic information paired with
immunohistochemical data can be in excess of 50,000 ele-
ments. As a result object-orientated databases are essential to
manage the data. Many investigators who began with simple
spreadsheets have had to abandon them as their datasets have
grown, and have migrated to more robust enterprise level
server based platforms (Conway et al. 2006). These issues
are especially problematic for users who wish to maintain
images of the individual TMA cores within the database
(Braunschweig et al. 2004). Therefore, TMAs require spe-
ciWc management tools (Rojo et al. 2006).

The ability to create association between TMA spot
images and data is fundamental for successful Virtual

Fig. 7 Summaries the general 
limitations of microscope-based 
manual review of TMAs, and the 
solutions that Virtual Slides and 
automated image analysis 
systems can provide
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Microscopy. Even with the development of automated ana-
lysis it remains necessary to manually inspect and verify the
images and data at some point (Hewitt 2006). Therefore,
software which can facilitate the manual analysis and stor-
age of large images and associated data is imperative, espe-
cially with regard to the additional complexities associated
with TMA reviews.

There are numerous software applications that facilitate
review and data storage of TMAs. The technology varies
from academic oVerings to highly sophisticated commer-
cial applications (Conway et al. 2006; Manley et al. 2001;
Liu et al. 2002). Although Microsoft Excel™ spreadsheets
are traditionally used by scientists to store data, there is
always a signiWcant risk of human error, as large amounts
of data entry are required and the object-oriented nature of
the data does not lead to optimal data storage in spread-
sheets, also data is vulnerable to Wle corruption. In addition,
the ability for numerous users to edit spreadsheets intro-
duces potential opportunity for human errors without any
protocol for tracking the authorships of Wles. However, it is
imperative that TMA data is in a format that is easily avail-
able for distribution. The importance of distributing TMA
data is evident from the creation of a TMA data exchange
speciWcation, which is a community-based open source tool
for sharing TMA data. In 2001, the Association of Patho-
logy Informatics hosted the Wrst in a series of four work-
shops co-sponsored by the National Cancer Institute to
develop the open community supported TMA exchange
speciWcation, which allows researchers to submit their data
to journals and to public domain repositories and to share
and merge data from diVerent laboratories (Berman et al.
2003).

Academic software which facilitates the storage of TMA
data and images have the advantage of being low cost and
freely assessable to other low volume researchers. How-
ever, software created in an academic setting are typically
hardcoded and therefore do not facilitate on-the-Xy modiW-
cations. In addition, customer support is limited and access
is restricted to researchers only. One of the most successful
academic oVerings is TMAJ, which is reported to consist of
a database and set of open source software tools to manage
TMA data and images. TMAJ is presently implemented at
The Johns Hopkins TMA Laboratory, USA and is freely
available as an open-source software tool for academic use
only. TMAJ contains data from over 13,500 specimens,
7,000 blocks and 235 TMA’s containing greater than
35,000 tissue cores (De Marzo 2003).

There are numerous commercial oVerings which provide
a complete TMA workXow, these systems range in com-
plexity and functionality. The leaders in the Weld of TMA
speciWc software include; SlidePath’s (OpTMA), Aperio’s
(TMALab II) and Alphelys (Tisalys®). The systems func-
tionality varies; however, all the above systems provide the

utility to perform manual and automated image analysis
reviews and store the review and epidemiological data in an
associated database. Key features of any TMA workXow
solution should incorporate the ability to upload and de-
array TMAs with automatic identiWcation and association
of cores with case information. The system should provide
a rapid review interface to facilitate manual reviews, with
the instant embedding of scoring data into case information
Wles. The ability to perform high-throughput consolidation
across numerous reviewers’ data for multiple cores per
biopsy or patient cases should also be possible. Ideally, the
ability to view virtual arrays of all cores pertaining to a
biopsy or patient that have been immunohistochemically
stained with numerous biomarkers would be possible.
Finally the system should be fully searchable to provide
rapid retrieval of the review and associated data. Software
solutions that support some or all of the above features have
relieved the bottlenecks in TMA review and data manage-
ment. However, to truly realise the full potential of TMA
technology, high-throughput automated image analysis
should be considered.

Automated image analysis of immunohistochemically 
stained TMAs

It is possible to create image analysis algorithms which
quantify protein expression within TMAs utilising generic
programming applications for example, MatLab® (The
MathWorks, Inc., USA) or ImageJ (National Institute of
Health, USA) (Carmona et al. 2007; Francisco et al. 2004).
Alternatively, it is possible to utilise commercially avail-
able image analysis applications which allow general
researchers to write and record application speciWc macros
in order to facilitate automated quantiWcation of protein
expression, for example Image-Pro Plus® (Media Cybernet-
ics, Inc., USA). Utilising Image-Pro Plus, it is possible to
extract features with spatial tools that isolate an area of
interest from the rest of the image, or with segmentation
tools that extract features by colour or intensity value. The
greatest advantage of Image-Pro Plus is that non-program-
mers can create an eVective algorithm. However, Image-
Pro Plus is only of beneWt for Weld of view analysis, as the
manual segmentation of large images into tiles of areas of
interest is highly labour intensive. While Image-Pro Plus is
accurate, reproducible and quantitative the software alone
will not increase throughput of analysis.

There are numerous commercial systems available that
are speciWcally designed for the quantiWcation of immuno-
histochemical staining including; IHCscore (Bacus Labora-
tories, Inc, USA); iVision (BioGenex Laboratories, Inc.,
USA), TissueMap (DeWniens, Germany), VIAS (TriPath
Imaging Inc, USA); PATHIAM (BioImagene Inc, USA);
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ACIS-Automated cellular imaging systems (DakoCytoma-
tion, USA); AQUA-automated quantitative analysis (His-
toRx Inc, USA) and TMAx (Beecher Instrument’s, USA).
Cregger et al. (2006); comprehensively reviewed the func-
tionality of the image capture devices and image analysis
capabilities of numerous vendors. In addition, Rojo et al.
(2006); performed a comparative review of 31 digital slide
systems in pathology, describing hardware and software
functionalities. However, there are number of software
solutions speciWcally designed for the TMA workXow
analysis. These applications include Aperio (TMALab II),
Alphelys (Spot Browser®), Genetix (Ariol-SL-50) and
SlidePath (OpTMA). However, the fact that the majority of
image analysis systems only perform Weld-of-view analysis
is a major limitation with regard to high-throughput analy-
sis. There are only a limited number of vendors that provide
full-face and TMA high-throughput analysis, for example,
SlidePath and Aperio. A brief description of the TMA spe-
ciWc vendors functionality follows.

Aperio’s device, the ScanScope is designed for image
acquisition. Aperio currently has Wve generations of the
ScanScope; (T3, T2, CS, GL and XT) (Aperio Technolo-
gies, Inc, CA, USA) (Cregger et al. 2006). The ScanScope
is capable of high-speed digital slide creation, management,
and analysis. Aperio also provide software, namely TMA-
Lab II which facilitates the storage, manual/automated
analysis of TMAs and storage of associated data and
images with web-based software (Rojo et al. 2006). Using
TMALab II it is possible to view, score and annotate
TMAs, and in addition images and data can be exported
from the database. Utilising TMALab II, it is possible to
analyse entire immunohistochemically stained TMAs, spots
or regions of interest using the following algorithms;
nuclear, membrane, colour deconvolution and co-localisa-
tion. In addition, TMALab II also supports third party algo-
rithms, for example those written using Image-Pro Plus or
MatLab®. However, the software will only support Ape-
rio’s own image format SVS, therefore collaboration
between other institutes using alternative scanners can not
be supported. Aperio’s software is extremely popular
within the USA; however, in Europe where Zeiss, Ham-
amatsu and Olympus scanners are widespread the limita-
tion of the software’s proprietary Wle format restricts the
application of TMALab II (Aperio 2008).

Alphelys provide Tisalys®, a database for archiving,
reviewing and processing images and data generated during
TMA analysis. Alphelys also provide Spot Browser®, an
image analysis workstation integrated with microscope,
visualising and capturing images through colour CCD cam-
era and using a motorised stage. It allows rapid scanning of
TMAs to build the TMA map, assignment of deWned
coordinates to tissue spots to track and provide a user’s inter-
face for pathologist’s visual inspection and TMA browsing.

Spot Browser® facilitates the analysis of TMAs either
through visual inspection on the oculars or on the high reso-
lution screen, or through automated detection of speciWc
events for example, nuclei counting, signal quantitation,
surface determination, morphometry or both methods
simultaneously. All data collected can be exported to Excel
for further data processing (Alphelys 2008).

Genetix (formally Applied Imaging) provide the Ariol SL-
50, a TMA analysis application which combines an auto-
mated scanner and high-throughput automated image analy-
sis application for the quantiWcation of biomarkers on
microscope slides in both brightWeld and Xuorescent imag-
ing. Ariol has been FDA approved for in vitro diagnostic use
of HER-2/neu, ER and PR Immunohistochemistry. The Ariol
SL-50 system quantiWes nuclear, cytoplasmic and membrane
immunohistochemistry protein expression utilising both
nominal and quantitative scales. Both images and data are
archived in case Wle. Utilising industry standard SQL and
XML facilitate export of data and images from the Ariol SL-
50 system to third party databases. However, Ariol SL-50
operates purely on Weld of view analysis (Genetix 2008).

SlidePath provides a software product called OpTMA,
which is a secure web-enabled information management sys-
tem that facilitates integration of project information, digital
slides (full-face and TMAs) and multimedia Wles (for exam-
ple, PDF’s, Microsoft Word) into a fully searchable, hierar-
chical database. OpTMA enables easy curation of digital slide
archives and rapid retrieval of slides based on associated data
attributes. OpTMA also allows users to create customised
databases in order to store TMA images and clinical patho-
logical data. In addition, the software fully automates the de-
arraying process of TMAs, and then automatically associates
tissue spots with data. OpTMA also facilitates online reviews
of virtual TMAs whilst storing the generated data within the
database. The functionality to consolidate review data gener-
ated from multiple cores from a single biopsy/patient is also
available. Users are presented with a virtual array of cores and
associated review data, a consolidation form is then used to
record the overall observation of the multiple cores, and data
is returned to the database. The software facilitates high-
throughput automated image analysis, utilising nuclear, mem-
brane, cytoplasmic and positive pixel algorithms. Results can
be presented as either nominal or quantitative data. SlidePath
created an image analysis grid computing system which dis-
tributes images across multiple processing nodes, therefore
facilitating truly high-throughput automated analysis across
entire full-face sections and TMAs. In addition, third party
algorithms, for example those created using ImageJ or Mat-
Lab®, can be integrated into the image analysis harness. How-
ever, the greatest advantage of SlidePath’s products is the
software is vendor neutral. Currently, SlidePaths software
supports Zeiss (Mirax), Aperio (SVS), Bacus (BLISS), Nikon
(VSL), Olympus (WebImage) and Hamamatsu (VMS and
123



Histochem Cell Biol (2008) 130:447–463 459
NDPi) image Wle formats, in addition the software also sup-
ports non-propriety Wle formats for example JPEG, TIFF and
Bitmap (SlidePath 2008).

With respect to image analysis, it is important to note
that human analysis is still the gold standard when it comes
to feature recognition and object classiWcation. Human
reviewers can easily identify and classify tumour from non-
tumour and diVerentiate cell types from each other. Image
analysis, on the other hand, is extremely accurate at quanti-
Wcation of staining extent and intensity. Image analysis in
conjunction with TMAs (which are punched by qualiWed
human observers from appropriate regions of tissue) is a
combination that helps eliminate the obvious deWcits that
this technology experiences and allows developed algo-
rithms to focus on quantiWcation over object recognition.

Systems performance

Automated image analysis systems need to be reproducible
and at least as accurate as traditional methods of analysis.
Typically, the accuracy of these systems are validated by
comparing protein expression levels when quantiWed by
automated means with manual review data, traditional labo-
ratory tests (FISH and ELISA), and prognostic outcome. A
number of commercially available imaging systems have
received FDA premarket approval to quantify biomarker
expression as an aid in diagnosis. In order to obtain FDA

approval the level of concordance between manual and
automated image analysis is assessed. Table 1 illustrates
the total number of automated imaging systems that have
received FDA approval, and the levels of concordance
between automated and manual reviews. The table illus-
trates there is a high level of correlation between manual
and automated analysis. However, as previously described
human analysis is inherently Xawed. Therefore, correlation
of biomarker expression with prognosis is a more robust
evaluation of an image analysis system.

Table 2 lists the numerous publications that have utilised
image analysis systems as a means of quantifying protein
expression. The table illustrates the level of correlation
between automated imaging and manual review, laboratory
tests and prognostic data. The majority of publications have
utilised ACIS and AQUA systems, which as the results
illustrate are highly accurate when quantifying protein
expression. However, currently the systems do not have a
speciWc TMA workXow in place. Also the majority of anti-
bodies that have been assessed are membrane speciWc for
example HER-2 protein expression, or nuclear speciWc.

Factors to consider when deciding on image analysis 
applications

As with all experiments the quality of the results obtained
are dependent on the procedure and raw materials utilised.

Table 1 FDA 510k Approved Automated Image Analysis Systems and their performance

a In general, the likelihood of the image analysis systems to produce a consistent score on a given slide is as likely as the pathologists are to agree
with each other
b Depending on cut-oV thresholds of pos ¸1, 5 or 10% positive stained tumour cells

Manufacturer System Approved use Assay Sample size Automated vs manual 
score % concordance

Genetix Ariol HER-2 DAKO HercepTest 124 a

HER-2 (FISH) Abbott Vysis PathVysion 
DNA Probe kit

82 98

ER Kisight nuclear IHC 75 93.2–98.6b

PR Kisight nuclear IHC 75 84.4–96.1b

TriPath Imaging VIAS HER-2 Ventana PATHWAY anti-HER-2/
neu (clone cb11)

201 77

HER-2 PATHWAY (4B5) 206 86

PR Ventana anti-ER 210 88.2–94.1b

ER Ventana anti-PR 210 94.6–98.5b

P53 Ventana CONFIRM anti-p53 204 86–98b

Ki67 Ventana anti-Ki-67 207 88.4–97b

Chromavision ACIS HER-2 DAKO HercepTest 90 75

ER&PR No data No data No data

Cell analysis QCA ER DAKO Cytomation (1D5) 192 85.15

BioImagene PATHIAM HER-2 DAKO HercepTest 176 80.4

Aperio ScanScope XT System HER-2 DAKO HercepTest 180 86.5
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In the case of image analysis applications this translates to
image and stain quality (Hewitt 2006). Image analysis per-
formed on poorly scanned Virtual Slides or tissue with
staining artefacts will result in all likelihood in inaccurate
protein expression quantiWcation.

There are numerous factors to consider when selecting
image analysis software. Firstly, the system has to be user
friendly. There are numerous publications listing the merits
of image analysis as a means to quantify protein expression
on TMAs. However, the inXux of commercially available
image analysis applications utilised to quantitate protein
expression maybe extremely complex and diYcult to use.
Researchers have to decide upon creating their own algo-
rithms using software which facilitates macro development
for example, Image-Pro Plus or to purchase complete TMA
software solutions for example OpTMA (SlidePath). How-
ever, if algorithms are created using applications like
Image-Pro Plus extensive validation of the quality of the
results obtained is required. Typically, it is not possible to
purchase oV-the-shelf systems that require no knowledge or
understanding of image analysis. The intended users should
comprehend the basic principles of image analysis, and also
be able to interpret the large amounts of data that are gene-
rated from image analysis reviews. This skill set is not
innate in scientists, and therefore it is often more viable to
out-source image analysis requirements.

Secondly, there is a perception that image analysis and
virtual applications are prohibitively expensive. Research-
ers tend to focus on the most expensive component within
telepathology, which is the purchase of the scanning
device. Currently, the cost of purchasing high-throughput
scanners usually run at between 60,000 and 180,000 Euros
(Rojo et al. 2006). As a result, commercial systems are not
always viable in research or small laboratories (Camp and
Divito 2005; Camp et al. 2002, 2003), especially, as
researchers typically only produce a small volume of
TMA slides per year. However, collaborations can be cre-
ated between institutions, where a scanner is purchased by
a consortium of institutes, and slides are posted for digiti-
sation. By using a web-based information management
system, slides are then available for manual and auto-
mated image analysis. The costing of software solutions
that provide high-throughput automated analysis is rela-
tively low in relation to other “materials” that are pur-
chased in wet laboratories. The costing of these systems
has to be oV-set against the return on investment. Auto-
mated systems are proven to increase accuracy of results
and are more reproducibility than manual assessments.
However, most importantly automated analysis systems
increase throughput and therefore save pathologists’ pre-
cious time. In addition, numerous vendors provide man-
aged services whereby the digitisation and image analysis
requirements can be out-sourced, if the scale of project

does not merit the purchase of software or a scanner (for
example SlidePath).

Thirdly, a major consideration when utilising image ana-
lysis systems is how best to interpret the data. Typically,
quantitative computer aided image analysis results in contin-
uous variable data rather than an ordinal parameter. There-
fore, the users must decide how best to classify the biomarker
expression data, if at all. If the objective is to identify a prog-
nostically signiWcant biomarker it is possible to evaluate the
data as a continuous variable, by using the Cox proportional-
hazard regression. However, if users wish to persist with
ordinal or nominal classiWcation (i.e. use of Kaplan–Meier
analysis) the dataset must Wrst be segmented into categories,
by implementing arbitrary cut-points. Unbiased assignment
of cut-points can be achieved by creating two categories
above or below mean or modal continuous variable value or
by assessing top vs bottom quartile of a continuous variable
range. However, assignment of cut-points based on minimi-
sation of P values is a Xawed strategy. Users of this approach
will have to divide their datasets into training and test sets,
validating the signiWcance of these cut-points in a separate
cohort of patients. This in turn creates a requirement for the
provision of greater numbers of patients to increase statistical
power. X-tile (Camp et al. 2004) is a particularly useful
utility to help identify the optimal cut points in continuous
data based on P value minimisation strategies.

Conclusions

Tissue Microarrays facilitate high-throughput biomarker
validation, by arranging hundreds of tissue samples in a
uniform structure on the surface of a glass slide. However,
due to the sheer volume of tissue present within TMAs,
there are bottlenecks when performing microscope-based
reviews. In addition, human interpretation of staining inten-
sity is inherently Xawed. Utilising Virtual Microscopy, it is
possible to overcome the bottlenecks associated with tradi-
tional microscope-based TMA reviews. Numerous software
solutions exist which provide an end-to-end solution for
TMA-based analysis, facilitating both manual and auto-
mated reviews. Currently, Virtual Microscopy is preferable
to traditional microscope-based reviews. In addition, image
analysis has proven to be more accurate when quantiWng
biomarker expression. However, human interpretation of
feature recognition is still superior to any image analysis
system currently available.

References

Al Kuraya K, Simon R, Sauter G (2004) Tissue microarrays for high-
throughput molecular pathology. Ann Saudi Med 24:169–174
123



462 Histochem Cell Biol (2008) 130:447–463
Alphelys (2008) Spot Browser. http://www.alphelys.com/site/us/
pTA_StationAnalyse.htm

Aperio-Technologies (2008) Line scanning versus tile scanning. Ape-
rio-Technologies, Inc., Vista

Aperio (2008) TMALab DataSheet. http://www.aperio.com/PDF_
docs/quicklinks/TMALab_II.pdf

Bartlett J, Mallon E, Cooke T (2003) The clinical evaluation of HER-
2 status: which test to use? J Pathol 199:411–417

Berman JJ, Edgerton ME, Friedman BA (2003) The tissue microarray
data exchange speciWcation: a community-based, open source tool
for sharing tissue microarray data. BMC Med Inform Decis Mak 3:5

Braunschweig T, Chung JY, Hewitt SM (2004) Perspectives in tissue
microarrays. Comb Chem High Throughput Screen 7:575–585

Brennan DJ, Rexhepaj E, O’Brien SL, Mcsherry E, O’Connor DP, Fa-
gan A, Culhane AC, Higgins DG, Jirstrom K, Millikan RC, Land-
berg G, DuVy MJ, Hewitt SM, Gallagher WM (2008) Altered
cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator
in breast cancer. Clin Cancer Res 14:2681–2689

Bubendorf L, Nocito A, Moch H, Sauter G (2001) Tissue microarray
(TMA) technology: miniaturized pathology archives for high-
throughput in situ studies. J Pathol 195:72–79

Camozzi C, Razvi E (2004) Tissue: microarrays: facilitating drug re-
search. Genet Eng News 24:30–39

Camp RL, Divito KA (2005) Tissue Microarrays—automated analysis
and future directions. Breast Cancer Online 8

Camp RL, Chung GG, Rimm DL (2002) Automated subcellular
localization and quantiWcation of protein expression in tissue
microarrays. Nat Med 8:1323–1327

Camp RL, Dolled-Filhart M, King BL, Rimm DL (2003) Quantitative
analysis of breast cancer tissue microarrays shows that both high
and normal levels of HER2 expression are associated with poor
outcome. Cancer Res 63:1445–1448

Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-infor-
matics tool for biomarker assessment and outcome-based cut-
point optimization. Clin Cancer Res 10:7252–7259

Carmona R, Macias D, Guadix JA, Portillo V, Perez-Pomares JM, Mu-
noz-Chapuli R (2007) A simple technique of image analysis for
speciWc nuclear immunolocalization of proteins. J Microsc
225:96–99

Conway CM, O’Shea D, O’Brien S, Lawler DK, Dodrill GD, O’Grady
A, Barrett H, Gulmann C, O’Driscoll L, Gallagher WM, Kay EW,
O’Shea DG (2006) The development and validation of the Virtual
Tissue Matrix, a software application that facilitates the review of
tissue microarrays on line. BMC Bioinformatics 7:256

Costello SS, Johnston DJ, Dervan PA, O’Shea DG (2003) Develop-
ment and evaluation of the virtual pathology slide: a new tool in
telepathology. J Med Internet Res 5:e11

Cregger M, Berger AJ, Rimm DL (2006) Immunohistochemistry and
quantitative analysis of protein expression. Arch Pathol Lab Med
130:1026–1030

Cross SS, Dennis T, Start RD (2002) Telepathology: current status and
future prospects in diagnostic histopathology. Histopathology
41:91–109

DE MARZO AM (2003) Advancing practice, instruction, and innova-
tion through informatics (APIII 2007) conference. http://arpa.
allenpress.com/arpaonline/?request=getdocument

Divito KA, Berger AJ, Camp RL, Dolled-Filhart M, Rimm DL, Kluger
HM (2004) Automated quantitative analysis of tissue microarrays
reveals an association between high Bcl-2 expression and im-
proved outcome in melanoma. Cancer Res 64:8773–8777

Dodek (2007) Gradient Optical Illusion. http://en.wikipedia.org/wiki/
Image:Gradient-optical-illusion.svg

Dolled-Filhart M, Mccabe A, Giltnane J, Cregger M, Camp RL, Rimm
DL (2006) Quantitative in situ analysis of beta-catenin expression
in breast cancer shows decreased expression is associated with
poor outcome. Cancer Res 66:5487–5494

Ellis IO, Dowsett M, Bartlett J, Walker R, Cooke T, Gullick W,
Gusterson B, Mallon E, Lee PB (2000) Recommendations for
HER2 testing in the UK. J Clin Pathol 53:890–892

Ellis IO, Bartlett J, Dowsett M, Humphreys S, Jasani B, Miller K,
Pinder SE, Rhodes A, Walker R (2004) Best Practice No 176: up-
dated recommendations for HER2 testing in the UK. J Clin Pathol
57:233–237

Faith DA, Isaacs WB, Morgan JD, Fedor HL, Hicks JL, Mangold LA,
Walsh PC, Partin AW, Platz EA, Luo J, De Marzo AM (2004)
Trefoil factor 3 overexpression in prostatic carcinoma: prognostic
importance using tissue microarrays. Prostate 61:215–227

Fejzo MS, Slamon DJ (2001) Frozen tumor tissue microarray technol-
ogy for analysis of tumor RNA, DNA, and proteins. Am J Pathol
159:1645–1650

Francisco JS, Moraes HP, Dias EP (2004) Evaluation of the Image-Pro
Plus 4.5 software for automatic counting of labeled nuclei by
PCNA immunohistochemistry. Braz Oral Res 18:100–104

Genetix (2008) http://www.genetix.com/xhtml/benefits.aspx?pid=29
&pcid=1

Gokhale S, Rosen D, Sneige N, Diaz LK, Resetkova E, Sahin A, Liu J,
Albarracin CT (2007) Assessment of two automated imaging sys-
tems in evaluating estrogen receptor status in breast carcinoma.
Appl Immunohistochem Mol Morphol 15:451–455

Habib I (2005) Automated microscope slide analysis in pathology.
Detection technologies, IVD Technology. http://www.
devicelink.com/ivdt/archive/05/05/001.html

Harigopal M, Berger AJ, Camp RL, Rimm DL, Kluger HM (2005)
Automated quantitative analysis of E-cadherin expression in
lymph node metastases is predictive of survival in invasive ductal
breast cancer. Clin Cancer Res 11:4083–4089

Hewitt SM (2006) The application of tissue microarrays in the valida-
tion of microarray results. Methods Enzymol 410:400–415

Hicks DG, Tubbs RR (2005) Assessment of the HER2 status in breast
cancer by Xuorescence in situ hybridization: a technical review
with interpretive guidelines. Hum Pathol 36:250–261

Hoos A, Cordon-Cardo C (2001) Tissue microarray proWling of cancer
specimens and cell lines: opportunities and limitations. Lab Invest
81:1331–1338

Hsi ED, Tubbs RR (2004) Guidelines for HER2 testing in the UK. J
Clin Pathol 57:241–242

Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P (2001)
Computerized image analysis as a tool to quantify inWltrating leu-
kocytes: a comparison between high- and low-magniWcation im-
ages. J Histochem Cytochem 49:1073–1079

Joshi AS, Sharangpani GM, Porter K, Keyhani S, Morrison C, Basu
AS, Gholap GA, Gholap AS, Barsky SH (2007) Semi-automated
imaging system to quantitate Her-2/neu membrane receptor
immunoreactivity in human breast cancer. Cytometry A 71:273–
285

Kallioniaemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue
microarray technology for high-throughput molecular proWling of
cancer. Hum Mol Genet 10:657–662

Kay EW, Walsh CJ, Cassidy M, Curran B, Leader M (1994) C-erbB-2
immunostaining: problems with interpretation. J Clin Pathol
47:816–822

Kay E, O’Grady A, Morgan JM, Wozniak S, Jasani B (2004) Use of
tissue microarray for interlaboratory validation of HER2 immu-
nocytochemical and FISH testing. J Clin Pathol 57:1140–1144

Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P,
Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP
(1998) Tissue microarrays for high-throughput molecular proWl-
ing of tumor specimens. Nat Med 4:844–847

Lacroix-Triki M, Mathoulin-Pelissier S, Ghnassia JP, Macgrogan G,
Vincent-Salomon A, Brouste V, Mathieu MC, Roger P, Bibeau F,
Jacquemier J, Penault-Llorca F, Arnould L (2006) High inter-ob-
server agreement in immunohistochemical evaluation of HER-2/
123

http://www.alphelys.com/site/us/pTA_StationAnalyse.htm
http://www.alphelys.com/site/us/pTA_StationAnalyse.htm
http://www.aperio.com/PDF_docs/quicklinks/TMALab_II.pdf
http://www.aperio.com/PDF_docs/quicklinks/TMALab_II.pdf
http://arpa.allenpress.com/ arpaonline/?request=getdocument
http://arpa.allenpress.com/ arpaonline/?request=getdocument
http://en.wikipedia.org/wiki/Image:Gradient-optical-illusion.svg
http://en.wikipedia.org/wiki/Image:Gradient-optical-illusion.svg
http://www.genetix.com/xhtml/benefits.aspx?pid=29&pcid=1
http://www.genetix.com/xhtml/benefits.aspx?pid=29&pcid=1
http://www.devicelink.com/ivdt/ archive/05/05/001.html
http://www.devicelink.com/ivdt/ archive/05/05/001.html


Histochem Cell Biol (2008) 130:447–463 463
neu expression in breast cancer: a multicentre GEFPICS study.
Eur J Cancer 42:2946–2953

Leys CM, Nomura S, LaXeur BJ, Ferrone S, Kaminishi M, Montgom-
ery E, Goldenring JR (2007) Expression and prognostic signiW-
cance of prothymosin-alpha and ERp57 in human gastric cancer.
Surgery 141:41–50

Liu CL, Prapong W, Natkunam Y, Alizadeh A, Montgomery K, Gilks
CB, van de Rijn M (2002) Software tools for high-throughput
analysis and archiving of immunohistochemistry staining data ob-
tained with tissue microarrays. Am J Pathol 161:1557–1565

Lockal (2007) Illustration to demonstrate the Bezold eVect. http://en.
wikipedia.org/wiki/Image:Bezold_Effect.svg

Macbeath G (2002) Protein microarrays and proteomics. Nat Genet
32(Suppl):526–532

Manley S, Mucci NR, de Marzo AM, Rubin MA (2001) Relational
database structure to manage high-density tissue microarray data
and images for pathology studies focusing on clinical outcome:
the prostate specialized program of research excellence model.
Am J Pathol 159:837–843

Messersmith W, Oppenheimer D, Peralba J, Sebastiani V, Amador M,
Jimeno A, Embuscado E, Hidalgo M, Iacobuzio-Donahue C
(2005) Assessment of Epidermal Growth Factor Receptor (EG-
FR) signaling in paired colorectal cancer and normal colon tissue
samples using computer-aided immunohistochemical analysis.
Cancer Biol Ther 4:1381–1386

Milanes-Yearsley M, Hammond ME, Pajak TF, Cooper JS, Chang C,
GriYn T, Nelson D, Laramore G, Pilepich M (2002) Tissue micro-
array: a cost and time-eVective method for correlative studies by re-
gional and national cancer study groups. Mod Pathol 15:1366–1373

Moch H, Kononen T, Kallioniemi OP, Sauter G (2001) Tissue micro-
arrays: what will they bring to molecular and anatomic pathol-
ogy? Adv Anat Pathol 8:14–20

Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE,
Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-speciWc
membrane antigen expression as a predictor of prostate cancer
progression. Hum Pathol 38:696–701

Plodowski A, Jackson SR (2001) Vision: getting to grips with the
Ebbinghaus illusion. Curr Biol 11:R304–R306

Rojo MG, Garcia GB, Mateos CP, Garcia JG, Vicente MC (2006) Crit-
ical comparison of 31 commercially available digital slide sys-
tems in pathology. Int J Surg Pathol 14:285–305

Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL,
Gelman R, Page DL (1992) Interobserver reproducibility in the
diagnosis of ductal proliferative breast lesions using standardized
criteria. Am J Surg Pathol 16:1133–1143

Sharpe (2008) OPT Microscopy. http://genex.hgu.mrc.ac.uk/OPT_
Microscopy/optwebsite/introduction/introduction/introduction.htm

Shergill IS, Shergill NK, Arya M, Patel HR (2004) Tissue microarrays:
a current medical research tool. Curr Med Res Opin 20:707–712

Simon R, Sauter G (2002) Tissue microarrays for miniaturized high-
throughput molecular proWling of tumors. Exp Hematol 30:1365–
1372

SlidePath (2008) Invent, Dublin City University, Dublin 9, Ireland.
http://www.slidepath.com/

Sonka M et al. (1993) Image processing analysis, and machine vision.
Chapman & Hall Computing, London

Stromberg S, Bjorklund MG, Asplund C, Skollermo A, Persson A,
Wester K, Kampf C, Nilsson P, Andersson AC, Uhlen M, Kononen

J, Ponten F, Asplund A (2007) A high-throughput strategy for
protein proWling in cell microarrays using automated image anal-
ysis. Proteomics 7:2142–2150

TawWk OW, Kimler BF, Davis M, Donahue JK, Persons DL, Fan F,
Hagemeister S, Thomas P, Connor C, Jewell W, Fabian CJ (2006)
Comparison of immunohistochemistry by automated cellular
imaging system (ACIS) versus Xuorescence in-situ hybridization
in the evaluation of HER-2/neu expression in primary breast car-
cinoma. Histopathology 48:258–267

Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross
F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G
(2001) Tissue microarrays for rapid linking of molecular changes
to clinical endpoints. Am J Pathol 159:2249–2256

Tubbs RR, Swain E, Pettay JD, Hicks DG (2007) An approach to the
validation of novel molecular markers of breast cancer via TMA-
based FISH scanning. J Mol Histol 38:141–150

Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD,
Mckinney S, Treaba DO, Boyd N, Goldstein LC, Badve S, Gown
AM, van de Rijn M, Nielsen TO, Gilks CB, Huntsman DG (2007)
Automated quantitative analysis of estrogen receptor expression
in breast carcinoma does not diVer from expert pathologist scor-
ing: a tissue microarray study of 3,484 cases. Breast Cancer Res
Treat

Tzankov A, Went P, Zimpfer A, Dirnhofer S (2005) Tissue microarray
technology: principles, pitfalls and perspectives—lessons learned
from hematological malignancies. Exp Gerontol 40:737–744

Wang H, Wang H, Zhang W, Fuller GN (2002) Tissue microarrays:
applications in neuropathology research, diagnosis, and educa-
tion. Brain Pathol 12:95–107

Wang S, Saboorian MH, Frenkel EP, Haley BB, Siddiqui MT, Goka-
slan S, Wians FH Jr, Hynan L, Ashfaq R (2001) Assessment of
HER-2/neu status in breast cancer. Automated Cellular Imaging
System (ACIS)-assisted quantitation of immunohistochemical as-
say achieves high accuracy in comparison with Xuorescence in
situ hybridization assay as the standard. Am J Clin Pathol
116:495–503

Watanabe I (2007). Laboratory of Isao Watanabe, Visual Illusions.
http://www.let.kumamoto-u.ac.jp/ihs/hum/psychology/watanabe/
Watanabe-E/Illus-E/index.html

Weaver DL, Krag DN, Manna EA, Ashikaga T, Harlow SP, Bauer KD
(2003) Comparison of pathologist-detected and automated com-
puter-assisted image analysis detected sentinel lymph node mi-
crometastases in breast cancer. Mod Pathol 16:1159–1163

Wei B, Bu H, Zhu CR, Guo LX, Chen HJ, Zhao C, Zhang P, Chen DY,
Tang Y, Jiang Y (2004) Interobserver reproducibility in the path-
ologic diagnosis of borderline ductal proliferative breast diseases.
Sichuan Da Xue Xue Bao Yi Xue Ban 35:849–853

Zerkowski MP, Camp RL, Burtness BA, Rimm DL, Chung GG (2007)
Quantitative analysis of breast cancer tissue microarrays shows
high cox-2 expression is associated with poor outcome. Cancer
Invest 25:19–26

Zhang L, Wang C (2006) F-box protein Skp2: a novel transcriptional
target of E2F. Oncogene 25:2615–2627

Zu Y, Steinberg SM, Campo E, Hans CP, Weisenburger DD, Braziel
RM, Delabie J, Gascoyne RD, Muller-Hermlink K, Pittaluga S,
RaVeld M, Chan WC, JaVe ES (2005) Validation of tissue micro-
array immunohistochemistry staining and interpretation in diVuse
large B-cell lymphoma. Leuk Lymphoma 46:693–701
123

http:// en.wikipedia.org/wiki/Image:Bezold_Effect.svg
http:// en.wikipedia.org/wiki/Image:Bezold_Effect.svg
http://genex.hgu.mrc.ac.uk/OPT_Microscopy/optwebsite/introduction/introduction/introduction.htm
http://genex.hgu.mrc.ac.uk/OPT_Microscopy/optwebsite/introduction/introduction/introduction.htm
http://www.slidepath.com/
http://www.let.kumamoto-u.ac.jp/ihs/hum/psychology/watanabe/Watanabe-E/Illus-E/index.html

	Virtual microscopy as an enabler of automated/quantitative assessment of protein expression in TMAs
	Abstract
	Introduction
	TMA technology
	Impact of TMA construction and staining on visual interpretation
	Manual interpretation of TMAs
	Orientation
	Sequence of cores reviewed
	Workload and sample size
	Management of data
	Scoring forms
	Illumination
	Human vision limitations

	Virtual microscopy
	Software workXow solutions for TMAs
	Automated image analysis of immunohistochemically stained TMAs
	Systems performance
	Factors to consider when deciding on image analysis applications
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


