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Abstract “Autophagy” is a highly conserved pathway for
degradation, by which wasted intracellular macromolecules
are delivered to lysosomes, where they are degraded into
biologically active monomers such as amino acids that are
subsequently re-used to maintain cellular metabolic turn-
over and homeostasis. Recent genetic studies have shown
that mice lacking an autophagy-related gene (A#g5 or Atg7)
cannot survive longer than 12 h after birth because of nutri-
ent shortage. Moreover, tissue-specific impairment of
autophagy in central nervous system tissue causes massive
loss of neurons, resulting in neurodegeneration, while
impaired autophagy in liver tissue causes accumulation of
wasted organelles, leading to hepatomegaly. Although
autophagy generally prevents cell death, our recent study
using conditional Arg7-deficient mice in CNS tissue has
demonstrated the presence of autophagic neuron death in
the hippocampus after neonatal hypoxic/ischemic brain
injury. Thus, recent genetic studies have shown that
autophagy is involved in various cellular functions. In this
review, we introduce physiological and pathophysiological
roles of autophagy.
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LC3 Microtubule associated protein 1 light
chain 3

Macroautophagy  Autophagy

3-MA 3-Methyladenine

PE Phosphatidylethanolamine

SDS-FRL Sodium dodecyl sulphate-digested
freeze-fracture replica labeling

TGN trans-Golgi network

Z-VAD-fmk Benzyloxycarbonylvalyl-alanyl-aspartic
acid (O-methyl)-fluoro-methylketone

Introduction

Lysosomes are multifunctional membrane-bound organelles
that are present in all mammalian cells. Their internal
environment is acidic, with pH ranging from 5.0 to 5.5 and
contains various acid hydrolases, while they degrade
excess, old, and unneeded intracellular substances and
organelles, as well as extracellular materials, into biologi-
cally active monomers that are recycled intracellularly.
Intracellular trafficking of such macromolecules to
lysosomes are mediated by the following processes: endo-
cytosis of cell-surface-receptor proteins with bound
ligands, produces early endosomes; heterophagocytosis of
large extracellular materials, such as dead cells and bacte-
ria, produces heterophagosomes; and, autophagy of old and
unneeded intracellular materials produces autophagosomes.
Early endosomes, heterophagosomes, and autophagosomes
then receive lysosomal enzymes by fusing with lysosomes
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or transporting vesicles from the frans-Golgi network
(TGN). Degradation begins in these compartments that
become subsequently late endosomes/lysosomes, hetero-
phagolysosomes, and autolysosomes, respectively (Fig. 1).

A membrane tissue fraction containing acid hydrolases
was first discovered in 1955 by de Duve who called the
membrane compartment as a “lysosome” (de Duve et al.
1955). Moreover, the first morphologic description of auto-
phagic processes using electron microscopy was performed
by Clark (1957), who noted that the bodies and vacuoles in
the basal and apical regions of proximal tubular epithelial
cells in infant mouse kidneys were surrounded by dense
membranes and contained small canalicular structures,
dense lamellar inclusions, and altered mitochondria. Simi-
larly, Ashford and Porter observed the breakdown or hydro-
lIytic process of mitochondria that are sequestered by
membrane structures was demonstrated in glucagon-treated
hepatocytes (Ashford and Porter 1962). The cellular pro-
cess by which cytoplasmic organelles such as mitochon-
dria, together with part of the cytoplasm, are sequestered by
membrane structures and was termed “autophagy” by de
Duve (1963) and de Duve and Wattiaux (1966). The con-
cept of autophagosomes was proposed as prelysosomes that
have not yet received acid hydrolases, while the structures
become mature as autolysosomes by fusion with primary
lysosomes and finally inert residual bodies as postlyso-
somes (de Duve and Wattiaux 1966).

The early concept of lysosomes and autophagy was
established by de Duve and his colleagues (de Duve 1963;
de Duve et al. 1955; de Duve and Wattiaux 1966). It was

Endocytosis

Heterophagocytosis
Trans-Golgi

network Early
Endnsom
o ‘

Late
( Endosome
e @ Heterophagolysososome
Autophagy
. o . =

Fig. 1 Biogenesis of lysosomes: cells execute receptor-mediated
endocytosis, heterophagocytosis, and autophagy, forming -early
endosomes, heterophagosomes, and autophagosomes, respectively. To
degrade ingested materials, each structure receives lysosomal enzymes
by fusing with transporting vesicles from TGN or lysosomes and be-
comes late endosomes, heterophagolysosomes, and auto(phago)lyso-
somes. Before receiving lysosomal enzymes, autophagosomes fuse
with endosomes and become amphisomes (Gordon and Seglen 1988)
that are not drawn in this diagram
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modified by the concept of GERL (Golgi apparatus—endo-
plasmic reticulum (ER)-lysosomes) in which lysosomal
enzymes synthesized in the rough ER are packed in vesicles
that are associated with the Golgi apparatus and are trans-
ferred to pre-existing lysosomes (Novikoff etal. 1971).
Then, the concept of GERL has been improved by under-
standing the role of the Golgi apparatus and TGN (Griffiths
and Simons 1986; Traub and Kornfeld 1997). In particular,
the lysosomal system has been developed in relation to
endocytosis and the endosomal pathway (Mellman 1996;
Mukherjee et al. 1997; van Meel and Klumperman 2008;
Kurz et al. 2008; Sandvig et al. 2008).

Unlike studies of the endosomal pathway, most studies of
autophagy have examined the morphological aspects of
autophagy and experimental conditions that induce autophagy
(Arstila and Trump 1968; de Duve and Wattiaux 1966;
Dunn 1990a, b; Ericsson 1969a, b; Schworer and Mortimore
1979; Schworer et al. 1981; Yamamoto et al. 1990; Yokota
1993). The origins of isolation membranes, as well as vari-
ous experimental conditions that induce autophagy, have
been areas of intensive research; the isolation membrane of
autophagosomes has been suggested to be derived from ER,
although isolation and characterization of these compart-
ments would provide evidence about the origin of autophag-
osomal membranes, which has been a controversial subject
(Bolender and Weibel 1973; Dunn 1990a, b; Fengsrud et al.
1995; Kovacs et al. 2000; Mizushima 2005; Ueno et al.
1991; Yokota 1993). Ohsumi and his colleagues have
cloned autophagy-related genes from yeast mutants that
cannot execute autophagy (Tsukada and Ohsumi 1993) and
found a protein conjugation system essential for autophagy
and the first mammalian homologues of yeast Atgs
(Mizushima et al. 1998a, b). This discovery was the begin-
ning of an era of molecular research in the field of autophagy.

It is well known that autophagy is composed of macro-
autophagy, microautophagy (Klionsky etal. 2007) and
chaperone-mediated autophagy (Massey et al. 2006) that
differ in physiological function and the delivery mode to
lysosomes. This review is primarily concerned with macro-
autophagy (hereafter referred to as autophagy). Autophagy
is a highly regulated process involving the bulk degradation
of cytoplasmic macromolecules and organelles in mamma-
lian cells via the lysosomal system, while it is induced dur-
ing starvation, differentiation, and normal growth control to
maintain homeostasis and survival (Komatsu et al. 2005;
Kuma et al. 2004; Shintani and Klionsky 2004). To under-
stand the various roles of autophagy, Mizushima (2005,
2007) proposed the subclassification of autophagy into
“induced” and “basal” autophagy; the former produces
amino acids in response to starvation, and the latter is
important for constitutive turnover of cytoplasmic compo-
nents. The concept of basal autophagy is based on the fact
that the defect of autophagy results in accumulation of
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cytoplasmic components that are destined to be cleared, cell
death, or death of the organism (Hara et al. 2006; Komatsu
etal. 2005, 2006, 2007a; Kuma etal. 2004). Induced
autophagy is essential for the maintenance of cellular
homeostasis and cell survival. However, highly accelerated
autophagy may also be involved in pathogenesis of neuro-
degeneration, such as loss of lysosomal proteinases and of
myopathy, such as Pompe disease (Koike etal. 2005;
Raben et al. 2007). Moreover, ischemia-induced autophagy
contributes to neuron death in mouse brain (Koike et al.
2008). Thus, it is important to further understand how this
dual role of autophagy is regulated. In this review, we intro-
duce the physiology and pathophysiology of autophagy
based primarily on our recent studies.

What is autophagy?
Morphological aspects of autophagy

As stated above, autophagy is an evolutionarily conserved
pathway to lysosomes (Fig. 1). In the process of autophagy,
excess, old and unneeded cytoplasmic macromolecules
including long-lived proteins and organelles are seques-
tered by ER-like cisternal structures called the isolation
membrane, forming autophagosomes (Reggiori and Klion-
sky 2005). Autophagosomes further receive lysosomal
enzymes by fusing with transporting vesicles from TGN or
lysosomes and degradation starts for the turnover and recy-
cling of the cellular constituents (Fig. 2). As evidenced by
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Fig. 2 Diagram showing an autophagic pathway. Excess, old, and un-
needed macromolecules, including long-lived proteins and organelles
happen to be sequestered and enwrapped completely by the ER-like
isolation membrane, the origin of which is unknown, and become auto-
phagosomes that receive lysosomal enzymes by fusing with transport-
ing vesicles from trans-Golgi network or lysosomes. Then degradation
starts and autophagosomes become auto(phago)lysosomes. Lyso-
somes contain acid hydrolases such as cathepsins

electron microscopy, autophagosomes are induced to occur
in hepatocytes of adult mice after starvation for 24 and
48 h, although it is rather difficult to observe nascent auto-
phagosomes in hepatocytes under physiological conditions
(Fig. 3). Typically, autophagosomes detected by electron
microscopy in hepatocytes after starvation for 24 h are rela-
tively small (<0.5 mm in diameter) and frequently appear
near the bile canaliculi. Nascent autophagosomes that are
enwrapped by the ER-like isolation membrane possess part
of the cytoplasm, although organelles such as mitochondria
and peroxisomes are rarely found within autophagosomes
24 h after the beginning of starvation (Fig. 3). However,
relatively larger autophagosomes (approximately 1 to
1.5 mm in diameter) that contain mitochondria and rough
ER appear in hepatocytes obtained 48 h later (Fig. 4). It is
generally believed that such nascent autophagosomes fuse
with lysosomes, although we have never obtained images
showing fusion between lysosomes and nascent autophago-
somes. Instead of the fusion process of autophagosomes
with lysosomes, various types of autophagosomes/auto-
lysosomes can be detected in hepatocytes under starvation
conditions; the cisternal space of double membranes shows
increased electron density, one part of the double mem-
brane space with a high electron density becomes signifi-
cantly enlarged, vacuolar structures with single membranes
possess membranous structures, and commonly detected
lysosomal structures have heterogeneously dense materials
(Fig. 4). Thus, maturation of autophagosomes to lysosomes
is detectable in hepatocytes of mice starved for 24 and 48 h.
Yokota (1993) has shown that the degradation process of
excess peroxisomes in rat hepatocytes treated with dioctyl
phthalate is rapid and carried out by the autophagic system.
In that study he further demonstrated that the isolation
membranes enclosing the target organelles are derived from
ER. Clearance of mitochondria and peroxisomes has also
been observed in isolated hepatocytes (Eskelinen 2005).
Visualization of autophagosomes and autolysosomes has
been intensely investigated, using microtubule-associated
protein 1 light chain 3 (LC3), a mammalian homologue of
yeast Atg8, as a marker protein of autophagosomes
(Kabeya et al. 2000). LC3 that is cleaved near the C-termi-
nal glycine residue by Atg4B soon after being synthesized
becomes cytosolic LC3-I (Yoshimura et al. 2006). It is fur-
ther converted to membrane-bound LC3-II by addition of
phosphatidylethanolamine to the C-terminal glycine resi-
due upon induction of autophagy (Kabeya et al. 2000). This
modification of LC3 is conducted by the ubiquitin-like con-
jugation system in which Atg7 and Atg3 act as E1 and E2
enzymes, respectively (Tanida et al. 2001). As evidenced
by western blotting, LC3-I is converted to LC3-II in PC12
cells, a rat pheochromocytoma cell line, when they are
incubated in the absence of serum (Ohsawa et al. 1998;
Uchiyama 2001). This tendency is clearly detected when
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Fig. 3 Electron micrographs of
hepatocytes obtained from a
mouse housed under starvation
conditions for 24 h. Numerous
vacuolar structures (arrow-
heads) are detectable near bile
canaliculi (a). Some of these
vacuoles are enwrapped by
double membranes with
morphologically intact
cytoplasm (b), and double- or
single-membranes with
degraded, but morphologically
identifiable cytoplasmic
materials and structures (c—e).
Some vacuoles are encircled by
double membranes and a part or
whole portion of the
intermembrane space is
occupied with a dense material
(d, e). A lysosome has
heterogeneously electron dense
materials (f). Bars indicate

1 mm in a and 0.5 pm in b—f

the cells are cultured in the presence of cysteine and/or
aspartic proteinase inhibitors, such as E-64-d and/or pepsta-
tin A (Fig. 5). Positive immunostaining for LC3 becomes
punctated in the cytoplasm (Fig. 6). However, it is difficult
to show membrane-bound LC3-II on the autophagosomal
membrane using ordinary immunoelectron microscopy. We
have clearly demonstrated that LC3 is localized on the
membrane of autophagic structures in neurons of cathepsin
D-deficient mouse brains by immunoelectron microscopy
using the sodium dodecyl sulphate-digested freeze-fracture
replica labeling (SDS-FRL) technique (Koike et al. 2005)
(Fig. 7).
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GFP-LC3 transgenic mice, engineered to monitor auto-
phagosome formation, have been used in many studies of
autophagy (Mizushima et al. 2003). Using the mice under
starvation conditions, Mizushima et al. (2003) have shown
by fluorescence microscopy that cup-shaped, ring-shaped,
and punctated structures appear in various tissue cells
including hepatocytes, cardiac myocytes, and skeletal
myocytes. Similar to the results of electron microscopy,
autophagosomes with ring-shaped structures were larger
than 1 pm (Mizushima et al. 2003). More recently, methods
for monitoring autophagic processes have been introduced
by Klionsky et al. (2008).
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Fig. 4 Electron micrographs of
hepatocytes obtained from a
mouse housed under starvation
conditions for 48 h. Numerous
vacuolar structures (arrow-
heads) are detectable near bile
canaliculi. Vacuolar structures
are clearly larger in hepatocytes
from mice starved for 48 h (a)
than from mice starved for 24 h
(see Fig. 3a). Some of these
vacuoles are enwrapped by
double membranes with
morphologically intact
cytoplasm (b, ¢), and single
membranes with degraded but
morphologically identifiable
cytoplasmic materials and
structures (d—f). Bars indicate

1 umin a and 0.5 pm in b—f

Molecular aspects of autophagy

The first genetic screen for autophagy mutants in yeast
was performed by Ohsumi and his colleagues (1993), who
identified the first (Atgl) (Matsuura etal. 1997) and,
recently, the 31st autophagy-related gene (Atg31)
(Kabeya et al. 2007). In yeast autophagy, many of these
31 Atgs participate in initiation of autophagosome forma-
tion and gather one spot near the vacuolar membrane—
the preautophagosomal structure (PAS) (Kim et al. 2002;
Suzuki et al. 2001). Among 31 Atg proteins, the 18 that

are involved in autophagosome formation are called AP-
Atg proteins (Kabeya et al. 2007; Klionsky et al. 2003;
Suzuki et al. 2007): Atgl to 10, Atgl2 to 14, Atgl6 to 18,
Atg29, and Atg31. The roles of these gene products,
together with their mammalian homologues, are summa-
rized in Table 1. Until recently, structures corresponding
to PAS have not yet been found in mammals; however,
considering the fact that membrane dynamics during auto-
phagic process are conserved from yeast to mammals,
mammalian homologous proteins of yeast Atg proteins
that are localized to PAS must be essential for initiation of
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Fig. 5 Western blotting for LC3. PC12 cells were incubated in the ab-
sence of serum and in the presence of a cysteine proteinase inhibitor,
E-64-d, or an aspartic proteinase inhibitor, pepstatin A, for 3,6 or 12 h
(h). Lysates from E-64-d-treated, pepstatin A-treated, and control un-
treated (before serum-free culturing) PC12 cells at each time point
were subjected to western blotting. Protein bands immunoreactive for
LC3 are detected at molecular weights of 18 and 16 kDa, which corre-
spond to membrane-bound LC3-II and cytosolic LC3-1, respectively.
The LC3-II form increases with time after the start of serum-free cul-
turing, indicative of progression of the autophagic process

autophagosome formation. Further studies are required to
resolve these questions.

Autophagy in disease
Defects in autophagy machinery

According to Kuma et al. (2004), the mice lacking Atg5
cannot survive more than 12 h after birth, during which
time they encounter the first, and probably most severe,
period of starvation during their lifespan. Kuma etal.
(2004) concluded that the nutrient supply derived from neo-
natal autophagy is essential for survival, although the pres-
ence of potential suckling defects may partially account for

Fig. 6 Immunostaining for LC3

m B

Fig. 7 Immunoelectron microscopy for LC3 using the SDS-FRL
method. Immunogold particles indicating LC3 are specifically present
on the granule membranes. Bar indicates 0.5 pm

the natural death of mice deficient in Arg5. Similar pheno-
types have been confirmed in mice deficient in Azg7, which
is essential for ATG conjugation systems and autophago-
some formation in mice (Komatsu et al. 2005). Conditional
knockout mice of Azg7 in the liver or central nervous sys-
tem (CNS) tissue have also been produced by Tanaka and
his colleagues (Komatsu et al. 2005, 2006). As for pheno-
types of these mice, it has been shown that ubiquitin aggre-
gates accumulate in the cytoplasm of hepatocytes or
neurons (Figs. 8, 9). Various abnormalities were observed
in the livers of conditionally Arg7-deficient (Arg7""/Flox,
Mx1-Cre) animals: concentric membrane structures that are
continuous to rough ER; accumulation of peroxisomes;
and, deformed mitochondria in the cytoplasm of hepato-
cytes, resulting in hepatomegaly 90 days after injection of
pIpC (Komatsu et al. 2005). In Atg7-deficient mice specifi-
cally in CNS tissue, loss of cerebral and cerebellar cortical
neurons occurs and ubiquitin aggregates accumulate in
neuronal perikarya and axons (Figs. 8, 9), leading to neuro-
degeneration, abnormal neurological signs, and death
(Komatsu et al. 2005, 2006). Ubiquitin aggregates were

Serum (-)

in PC12 cells. Cells were cul-
tured in the absence of serum
and in the presence of E-64-d, a
cysteine proteinase inhibitor,
and/or pepstatin A, an aspartic
proteinase inhibitor, for 3 or 6 h
(h). Cells that were cultured in
the presence of serum and in the
absence of serum without inhib-
itors were used as control. Punc-
tate signals for LC3 are distinct
in cells treated with inhibitors.
Bar indicates 10 pm

Control

3h

6h
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Table 1 AP-Atg proteins

ATG Characteristics

1 Protein kinase

2 Interact with Atg9

3 Phosphatidylethanolamine (PE) conjugation enzyme to Atg8 like E2

4 Cysteine protease processing C-terminal end of Atg8 and phosphatidylethanolamine
(PE) deconjugation enzyme from Atg8-11

5 E3 like activity for Atg8 conjugation system in corporation with Atgl2

6 (Beclin) Bcl-2 binding protein and a component of PI3 kinase complexes

7 Atg8 or atgl?2 activating enzyme like E1

8 (LC3, GABARAP, GATE-16) Ubiquitin-like protein conjugated to PE and marker for autophagosome

9 Only membrane protein among atg genes

10 Atg5 conjugation enzyme to Atgl2 like E2

12 Ubiquitin-like protein conjugated to Atg5

13 Activation of Atgl

14 Associate with PI3-Kinase complex I

16 Interact with Atgl2-Atg5 complex

17 Activation of Atgl, dispensable for Cvt vesicle formation

18 Interact with Atg9

29 PAS organization via interaction with Atgl7, dispensable for Cvt vesicle formation

31 PAS organization via interaction with Atgl7

Fig. 8 Immunostaining for
ubiquitin (Ubi) in the liver of
control (Atg7ﬁ°"/ flox) (a) and
Atg7!ofiox, Mx1-Cre (b) mice.
Mice were injected with plpg
once a week and killed 16 days
after the first injection. Positive
staining for ubiquitin is intensely
detected in coarse granules in
Atg7-deficient hepatocytes but
not in the control ones. Bar indi-
cates 20 pm

16d Ubi

detected in Arg7-deficient brains in which proteasomal
function was normal. Until these studies, it has been
believed that autophagy is a non-selective degradation
pathway upon nutrient deprivation. However, as stated
above, accumulation of ubiquitin aggregates occurs in
Atg7- or Atg5-deficient CNS neurons, in which nutrient
must be supplied constantly from other organs even under
starvation conditions. These findings indicate that the
constitutive/basal autophagy plays an essential role in the
elimination of unfavorable proteins. At present, it remains
largely unknown why ubiquitin aggregates occur in Atg7-
or Atg5-deficient neurons (see the next session). It is clear
that the ubiquitin-proteasomal pathway is responsible for

= B .-_._\\' .‘ : ,\ e '. . bl
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selective clearance of structurally aberrant proteins. Simul-
taneously, it is also worthy to note that ubiquitination may
function as a signal for selective clearance of some kinds of
proteins in CNS neurons. There are many neurodegenera-
tive diseases in which ubiquitin aggregates accumulate in
CNS neurons, but, to date, autophagy-related genes have
not been implicated in the etiology of these neurodegenera-
tive diseases. However, mice whose CNS neurons are
unable to execute autophagy may be useful for studying the
pathogenesis of neurodegenerative diseases such as Hun-
tington’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis (ALS), and peripheral neuropathies, although hun-
tingtin, a-synuclein, superoxide dismutase, and peripheral
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Fig. 9 Immunostaining for
ubiquitin (Ubi) in the cerebral
cortex of control (Atg7ﬁ°"/ flox)
(a) and Atg7”""‘”""’; Nestin-Cre
(b) mice at 4 weeks of age. Pos-
itive signals for ubiquitin are in-
tensely detected in cortical
neurons of an Atg7-deficient
brain, but not in the control cor-
tical neurons. Bar indicates

10 pm

4wk Ubi

myelin protein 22, respectively, are believed to be involved
in the pathogenesis of these diseases (Ciechanover and
Brundin 2003).

It has also been shown that specific ablation of an essen-
tial autophagy gene, Arg7, in Purkinje cells initially causes
cell-autonomous, progressive dystrophy (manifested by
axonal swellings) and degeneration of axon terminals
(Komatsu et al. 2007b). Moreover, Komatsu et al. (2007b)
have suggested that the autophagy protein, Atg7, is
required for membrane trafficking and turnover in the
axons, while impairment of axonal autophagy, a possible
mechanism of axonopathy, is associated with neurode-
generation. On the other hand, loss of Atg5, specifically in
Purkinje cells plays an important role in the maintenance of
axonal morphology and membrane structures, and its loss
of function leads to axonal swelling, followed by progres-
sive neurodegeneration in mammalian neurons (Nishiyama
etal. 2007). We have also noted the importance of basal
autophagy in axons of CNS tissue, since the accumulation
of nascent autophagosomes is detected in axons of the cor-
pus callosum in mice deficient in lysosomal cathepsin D or
doubly deficient in cathepsins B and L (Koike et al. 2005).

Autophagy in lysosome storage disorders due to cathepsin
deficiency

Lysosomal cathepsins B, L, and D (CB, CL, and CD) are
representative  cysteine and aspartic proteinases in
lysosomes and major proteinases in CNS neurons. The
most common inherited neurodegenerative disease in
childhood is neuronal ceroid-lipofuscinosis (NCL), which
is categorized as a lysosomal storage disorder and patho-
logically characterized by the accumulation of proteolipids,
such as subunit ¢ of mitochondrial ATP synthase and sphin-
golipid activator proteins in the lysosomes of neurons
(Fearnley etal. 1990; Hall etal. 1991; Kominami et al.
1992; Palmer et al. 1989). We have shown that the CNS
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neurons in CD-deficient and CB/CL-double deficient mice
show a new form of lysosomal accumulation disease with a
phenotype resembling NCLs and subunit ¢ accumulates in
lysosomes of the affected neurons (Koike et al. 2000, 2003,
2005; Nakanishi et al. 2001). Morphological hallmarks of
NCL neurons are granular osmiophilic deposits (GRODs)
and fingerprint profiles that can be seen in these mutant
mouse neurons. CB and subunit ¢ are detected in GRODs
of CD-deficient neurons (Koike et al. 2000), indicating that
the GRODs and fingerprint profiles are lysosomes. We have
demonstrated that immunosignals for subunit ¢ are granular
in the neuronal perikarya of CD-deficient and CB/CL-dou-
ble deficient mouse brains, while the localization pattern of
LC3 is similar to that of subunit ¢ in the neuronal perikarya
and fibrous in dendrites of cerebral and cerebellar cortical
neurons (Fig. 10) (Koike et al. 2005). Electron microscopy
of these mutant mouse brains showed that double mem-
brane-bound vacuoles (AV) containing part of the cyto-
plasm are frequently detected in CNS neurons of CD-
deficient and CB/CL-double deficient mice that are near
their terminal stages of the disease (Fig. 11). According to
Dunn (1994), autophagosomes undergo stepwise matura-
tion by fusing with endosomes and/or lysosomes, while two
types of AVs in this maturation process are distinguishable
by electron microscopy (Dunn 1990b; Liou et al. 1997):
nascent or immature AVs encircled by endoplasmic reticu-
lum (ER)-like membrane saccules contain part of the mor-
phologically-intact cytoplasm (AVi); and, mature AVs
encircled by a single membrane possess degraded but mor-
phologically identifiable cytoplasmic materials and struc-
tures (AVd) (Fig. 4). It is interesting that lysosome-like
structures such as dense bodies, GROD-like inclusions
and autophagosome-like structures themselves are often
surrounded, along with part of the cytoplasm, by membrane
saccules in CD-deficient and CB/CL-deficient neurons
(Fig. 11). This observation indicates that autophagosome
formation occurs frequently in these mutant neurons.
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Fig. 10 Immunostaining for LC3 in cathepsin D-deficient (CD—/—)
(b) and littermate control (CD+/—) (a) mouse cerebral cortexes at P23.
Positive signals for LC3 are intensely detected in granules of cortical

Fig. 11 Electron micrographs
of cerebral cortical neurons in
mouse brains deficient in
cathepsin D (CD—/—) at 3,523
and doubly deficient in
cathepsins B and L (CB—/
—CL—/—) at P13. Granular
osmiophilic deposits (GRODs)
abundantly accumulate in
neuronal perikarya of both
mutant mouse brains. GRODs in
the neurons are frequently
enwrapped together with part of
the cytoplasm by double-
membrane structures.

Bars indicate 1 pm

Morphometric analysis of these lysosomal structures in
CD-deficient neurons demonstrates that the volume densi-
ties of GRODs and AVs (AVi and AVd) increase with days
after birth. More interestingly, half of the AVi counted pos-
sess GRODs, and 20% of GRODs are detected in AVi.
These data suggest that the presence of GROD-like inclu-
sions and AVs with undigested materials such as GROD-
like inclusions may be a potent inducer of autophagy in
neuronal cells.

Although different from loss of lysosomal cathepsins,
increased autophagosome formation has also been found in
various tissue cells of LAMP2-deficient mice (Tanaka et al.
2000). In such mice, autophagic degradation of long-lived
proteins is severely impaired in hepatocytes, while cardiac
myocytes are ultrastructurally abnormal and heart contrac-
tility is severely reduced, indicating that LAMP?2 is critical
for autophagy. The deficiency of LAMP2 in humans has
been shown to cause Danon’s disease that is associated
with the accumulation of autophagic material in striated
myocytes (Tanaka et al. 2000). Moreover, since subunit ¢
of mitochondrial ATP synthase accumulates in the lyso-
somes of NCL neurons, Cao et al. (2006) hypothesized that
autophagy, a pathway that regulates mitochondrial turn-
over, might be impaired in CLN neurons (Cao et al. 2006).

neurons deficient in CD, while they are fibrilar in dendrites of both
control and mutant neurons. Bar indicates 20 pm

Therefore, they produced knock-in mice of CIn3, and found
that, in homozygous knock-in mice, the autophagy marker
LC3-II is increased, and mammalian target of rapamycin is
down-regulated. Moreover, they detected immature isolated
autophagic vacuoles and lysosomes from homozygous
knock-in mice. Thus, impairment of lysosomal functions
due to loss of lysosomal cathepsins and LAMP2, and
knock-in of CLN3 facilitates autophagosome formation,
resulting in lysosomal storage disorder.

Until recently, however, it remains largely unknown
what signaling is essential for autophagosome formation.
As stated above, in conditional Azg7-knock-out mice spe-
cifically in liver or CNS tissue, numerous ubiquitinated
aggregates are detected in the cytosol of hepatocytes or
CNS neurons with the presence of functional proteasomes
(Hara et al. 2006; Komatsu et al. 2005, 2006), indicating
that protein ubiquitination may serve as a signal to the auto-
phagic process in addition to the proteasomal pathway. The
presence of ubiquitin aggregates is one of the common
pathological characteristics of neurodegenerative diseases,
including lysosomal storage disorders (Ardley et al. 2005;
Settembre et al. 2008; Zhan et al. 1992). Moreover, LC3, a
marker of autophagosomes that is localized on both outer
and inner membranes of autophagosomes (Kabeya et al.
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2000), has been proposed to function as a receptor for
selective substrate, a multifunctional protein, p62/A170/
SQSTMI (p62) (Bjerkay et al. 2005) that mediates diverse
signaling pathways including cell stress, survival, and
inflammation (Moscat etal. 2006; Wooten et al. 2006).
Since the p62 protein can bind a large number of proteins
through its multiple protein—protein interaction motifs
(Moscat et al. 2006), including both LC3 and ubiquitin
(Komatsu et al. 2007a), the ubiquitin- and LC3-binding
protein “p62” regulates the formation of protein aggregates
and is removed by autophagy (Komatsu et al. 2007a). In
fact, p62 is degraded in lysosomes through autophagy, and
accumulates in autophagy-deficient cells (Komatsu et al.
2007a; Nakai et al. 2007; Wang et al. 2006). Moreover,
according to Komatsu et al. (2007), genetic ablation of p62
suppresses the appearance of ubiquitin-positive protein
aggregates in hepatocytes and neurons, indicating that p62
plays an important role in inclusion body formation,
although the pathologic process associated with autophagic
deficiency is cell type-specific.

Cell death and autophagy

Based on observations of ultrastructural changes in meta-
morphosis-related degeneration of insect intersegmental
muscles, Beaulaton and Lockshin have shown that
autophagy is responsible for selective degradation of
mitochondria, glycogen particles, ribosomes, and other
organized sarcoplasmic structures, but not for dissolution of
myofilaments that appear to be independent of lysosomal
activity (Beaulaton and Lockshin 1977). Therefore, they
suggested that lysosomal hydrolases are liberated into the
sarcoplasm, leading to destruction of myofibrils and cell
death. Recent understanding concerning the degradation of
myofilaments is that it is conducted by the ubiquitin protea-
somes system in cooperation with calpain (Goll et al.
2007). As Beaulation and Lockshin (1977) observed the
degradation of intersegmental muscular components
shortly after ecdysis to the moth by electron microscopy,
the proteolysis by the autophagy/lysosomal system in coop-
eration with the ubiquitin—proteasome system and calpain
serves the adaptive function of providing amino acids for
the non-feeding adult insect. Therefore, it may be difficult
to speculate that excess autophagy induces metamorphosis-
related cell death of intersegmental muscles.

Since Peter Clarke (1990) categorized physiological
neuron death into three types that can be detected in CNS
tissue during development—apoptotic, autophagic, and
non-lysosomal vesiculate—numerous studies have shown
the presence of autophagy-related cell death in various
CNS tissues, peripheral tissues, and cultured cells (Bursch
2001; Canu et al. 2005; Isahara et al. 1999; Ohsawa et al.
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1998; Shibata et al. 1998; Telbisz et al. 2002; Uchiyama
2001; Yu et al. 2004). Since 3-methyladenin (3-MA) was
identified as an inhibitor of autophagy (Gordon and Seglen
1982; Seglen and Gordon 1982), cell death that is accompa-
nied by autophagy and inhibited by 3-MA is suggested to
be autophagic cell death (Bursch etal. 1996; Uchiyama
2001). L298 fibroblastic cells are known to die by apoptosis
when treated with tumor necrosis factor, ceramide, oxi-
dants, or irradiation. Such apoptotic cell death is mediated
by activation of the caspase cascade. However, Z-VAD-
fmk (benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-
fluoro-methylketone), a pan-caspase inhibitor, does not
prevent this apoptosis of L298 cells (Fiers et al. 1999). The
treatment with Z-VAD-fmk also induces death in various
cell lines, such as U937 monocytoid cells, RAW 264.7
macrophage cells, and primary mouse macrophages. Yu
etal. (2004) have shown that Z-VAD-fmk-induced cell
death is prevented by 3-MA or wortmannin. Subsequently,
they tried to find ways to directly inhibit autophagy,
because 3-MA and wortmannin are general inhibitors of
phosphatidylinositol-3 (PI3) kinase, which may affect both
autophagy and non-apoptotic cell death. Thus, they found
that mRNA knockdown of Atg7 or Beclin-1, which are
essential for autophagy, prevent Z-VAD-fmk-induced
cell death. Therefore, potent inhibitors of apoptosis, like
Z-VAD-fmk, may have the unanticipated effects on auto-
phagic cell death (Yu et al. 2004).

As discussed above, autophagy is induced during starva-
tion, differentiation, and normal growth control to maintain
homeostasis and survival (Komatsu et al. 2005; Kuma et al.
2004; Shintani and Klionsky 2004). However, it is also
involved in neurodegenerative disorders (Chu 2006; Koike
et al. 2005; Nixon 2006; Zhu et al. 2007). In fact, autophagy
is highly induced in CA1 pyramidal neurons of gerbil hippo-
campus after brief forebrain ischemia and such damaged
pyramidal neurons undergo delayed neuronal death (Nitatori
et al. 1995). Induction of autophagy assessed using LC3 as
an autophagic marker has also been shown in neonatal and
adult mouse cortex, hippocampus, and striatum after hyp-
oxic/ischemic (H/I) brain injury (Adhami et al. 2006, 2007;
Koike et al. 2008; Uchiyama et al. 2008; Zhu et al. 2005,
2006). To answer the question of whether autophagy is
neuroprotective or anti-neuroprotective in the execution of
neuron death after H/I injury, we analyzed this H/I injury-
induced neuron death using autophagy-deficient neonatal
mice, caspase-3-deficient and caspase activated DNase
(CAD)-deficient mice (Koike et al. 2008). Our data can be
summarized into three primary conclusions. First, H/I
injury-induced pyramidal neuron death in the neonatal hip-
pocampus occurs in both caspase 3-dependent and caspase
3-independent manners. In this model, the caspase 3-inde-
pendent neuron death is accompanied by DNA ladder for-
mation that is mediated by an unknown DNase other than
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CAD. Second, H/I injury induces autophagy in neonatal hip-
pocampal pyramidal neurons, while this pyramidal neuron
death is prevented by Arg7 deficiency. Finally, pyramidal
neuron death in the adult hippocampus after H/I injury is
caspase-independent and accompanied by autophagosome
formation. In particular, morphological features of these
degenerating adult neurons resemble the features of type 2
neuron death, as defined by Clarke (1990). Our data provide
direct evidence for autophagy-induced neuron death follow-
ing neonatal mouse H/I brain injury in animals that cannot
execute autophagy, specifically in CNS tissue (Koike et al.
2008). Even though we obtained these results, using mice
deficient in Atg7 specifically in CNS tissue, it remains
largely unknown how loss of Arg7 prevents H/I injury-
induced pyramidal neuron death in the neonatal hippocam-
pus (Koike et al. 2008; Uchiyama et al. 2008). It is therefore
very important to understand the mechanism of how pyra-
midal neurons regulate the two opposite downstream effects
of autophagy, survival and death, after H/I insult.

Concluding remarks

This review summarized the physiological and pathophysio-
logical aspects of autophagy. Both “constitutive or basic”
and “induced” types of autophagy are very important for the
maintenance of cellular metabolism. In particular, genetic
studies have contributed to the understanding of multifunc-
tional aspects of autophagy. Although, we have described
our recent study of autophagic neuron death after H/I brain
injury, it remains largely unexplained why autophagy-defi-
cient neurons are resistant to H/I insult. Selective and non-
selective enwrapping mechanisms during autophagosome
formation and the origin of isolation membranes are also
largely unknown. Further studies are required to resolve
these physiological and pathological problems.

Acknowledgments The authors wish to thank Ms. K. Ikeue,
K. Ohta, A. Koseki and K. Isahara for their technical assistance. The
studies introduced here are supported by Grant-in-Aid for Scientific
Research from Japan Society for the Promotion of Science
(16GS0315) from the Ministry of Education, Science, Sports and
Culture, Japan.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ,
Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL,
Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK,
Sharp FR, Kuan CY (2006) Cerebral ischemia-hypoxia induces

intravascular coagulation and autophagy. Am J Pathol 169:566—
583

Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in
cerebral ischemia. Autophagy 3:42-44

Ardley HC, Hung CC, Robinson PA (2005) The aggravating role of the
ubiquitin—proteasome system in neurodegeneration. FEBS Lett
579:571-576

Arstila AU, Trump BF (1968) Studies on cellular autophagocytosis.
The formation of autophagic vacuoles in the liver after glucagon
administration. Am J Pathol 53:687-733

Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell
lysosomes. J Cell Biol 12:198-202

Beaulaton J, Lockshin RA (1977) Ultrastructural study of the normal
degeneration of the intersegmental muscles of Anthereae poly-
phemus and Manduca sexta (Insecta, Lepidoptera) with particular
reference of cellular autophagy. J Morphol 154:39-57

Bjgrkey G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A,
Stenmark H, Johansen T (2005) p62/SQSTMI1 forms protein
aggregates degraded by autophagy and has a protective effect on
huntingtin-induced cell death. J Cell Biol 171:603-614

Bolender RP, Weibel ER (1973) A morphometric study of the removal
of phenobarbital-induced membranes from hepatocytes after ces-
sation of threatment. J Cell Biol 56:746-761

Bursch W (2001) The autophagosomal-lysosomal compartment in
programmed cell death. Cell Death Differ 8:569-581

Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M,
Walker R, Hermann RS (1996) Active cell death induced by the
anti-estrogens tamoxifen and ICI 164 384 in human mammary
carcinoma cells (MCF-7) in culture: the role of autophagy. Carci-
nogenesis 17:1595-1607

Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P
(2005) Role of the autophagic-lysosomal system on low potas-
sium-induced apoptosis in cultured cerebellar granule cells.
J Neurochem 92:1228-1242

Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald
ME, Cotman SL (2006) Autophagy is disrupted in a knock-in
mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol
Chem 281:20483-20493

Chu CT (2006) Autophagic stress in neuronal injury and disease.
J Neuropathol Exp Neurol 65:423-432

Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in
neurodegenerative diseases: sometimes the chicken, sometimes
the egg. Neuron 40:427-446

Clark SLJ (1957) Cellular differentiation in the kidneys of newborn
mice studied with the electron microscope. J Biophys Biochem
Cytol 3:349-364

Clarke PG (1990) Developmental cell death: morphological diversity
and multiple mechanisms. Anat Embryol (Berl) 181:195-213

de Duve C (1963) Lysosomes. J. & A. Churchill, London

de Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev
Physiol 28:435-492

de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F
(1955) Tissue fractionation studies. 6. Intracellular distribution
patterns of enzymes in rat-liver tissue. Biochem J 60:604-617

Dunn WA Jr. (1990a) Studies on the mechanisms of autophagy: forma-
tion of the autophagic vacuole. J Cell Biol 110:1923-1933

Dunn WA Jr. (1990b) Studies on the mechanisms of autophagy: matu-
ration of the autophagic vacuole. J Cell Biol 110:1935-1945

Dunn WA Jr. (1994) Autophagy and related mechanisms of lysosome-
mediated protein degradation. Trends Cell Biol 4:139-143

Ericsson JL (1969a) Studies on induced cellular autophagy. I. Electron
microscopy of cells with in vivo labelled lysosomes. Exp Cell Res
55:95-106

Ericsson JL (1969b) Studies on induced cellular autophagy. II. Char-
acterization of the membranes bordering autophagosomes in
parenchymal liver cells. Exp Cell Res 56:393-405

@ Springer



418

Histochem Cell Biol (2008) 129:407—420

Eskelinen EL (2005) Maturation of autophagic vacuoles in Mamma-
lian cells. Autophagy 1:1-10

Fearnley IM, Walker JE, Martinus RD, Jolly RD, Kirkland KB, Shaw
GJ, Palmer DN (1990) The sequence of the major protein stored
in ovine ceroid lipofuscinosis is identical with that of the dicyclo-
hexylcarbodiimide-reactive proteolipid of mitochondrial ATP
synthase. Biochem J 268:751-758

Fengsrud M, Roos N, Berg T, Liou W, Slot JW, Seglen PO (1995) Ul-
trastructural and immunocytochemical characterization of auto-
phagic vacuoles in isolated hepatocytes: effects of vinblastine and
asparagine on vacuole distributions. Exp Cell Res 221:504-519

Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than
one way to die: apoptosis, necrosis and reactive oxygen damage.
Oncogene 18:7719-7730

Goll DE, Neti G, Mares SW, Thompson VF (2007) Myofibrillar pro-
tein turnover: the proteasome and the calpains. J Anim Sci
doi:10.2527/jas.2007-0395

Gordon PB, Seglen PO (1982) 6-substituted purines: a novel class of
inhibitors of endogenous protein degradation in isolated rat hepa-
tocytes. Arch Biochem Biophys 217:282-294

Gordon PB, Seglen PO (1988) Prelysosomal convergence of autopha-
gic and endocytic pathways. Biochem Biophys Res Commun
151:40-47

Griffiths G, Simons K (1986) The trans Golgi network: sorting at the
exit site of the Golgi complex. Science 234:438-443

Hall NA, Lake BD, Dewji NN, Patrick AD (1991) Lysosomal storage
of subunit ¢ of mitochondrial ATP synthase in Batten’s disease
(ceroid-lipofuscinosis). Biochem J 275(Pt 1):269-272

Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-
Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizu-
shima N (2006) Suppression of basal autophagy in neural cells
causes neurodegenerative disease in mice. Nature 441:885-889

Isahara K, Ohsawa Y, Kanamori S, Shibata M, Waguri S, Sato N, Go-
tow T, Watanabe T, Momoi T, Urase K, Kominami E, Uchiyama
Y (1999) Regulation of a novel pathway for cell death by lyso-
somal aspartic and cysteine proteinases. Neuroscience 91:233—
249

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T,
Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian
homologue of yeast Apg8p, is localized in autophagosome mem-
branes after processing. EMBO J 19:5720-5728

Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is re-
quired for autophagosome formation in Saccharomyces cerevisi-
ae. Biochem Biophys Res Commun 356:405-410

Kim J, Huang WP, Stromhaug PE, Klionsky DJ (2002) Convergence
of multiple autophagy and cytoplasm to vacuole targeting compo-
nents to a perivacuolar membrane compartment prior to de novo
vesicle formation. J Biol Chem 277:763-773

Klionsky DJ, Cregg JM, Dunn WA Jr., Emr SD, Sakai Y, Sandoval IV,
Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y
(2003) A unified nomenclature for yeast autophagy-related genes.
Dev Cell 5:539-545

Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring
autophagy from yeast to human. Autophagy 3:181-206

Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G,
Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bam-
ber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M,
Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT,
Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin
LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG,
Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes
A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB,
Dennis PA, Deretic V, Devenish RJ, Di Sano F, Dice JF, Difiglia
M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dor-
sey FC, Droge W, Dron M, Dunn WA Jr., Duszenko M, Eissa NT,
Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes

@ Springer

M, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson
SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C,
Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K,
Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela
M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki
M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A,
Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M,
Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Ku-
mar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo
MIJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF,
Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni
W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A,
Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B,
Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T,
Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon
RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Oz-
polat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter
DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M,
Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Ru-
binsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y,
Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Sele-
verstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-
Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA,
Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromh-
aug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson
MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Ta-
naka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G,
Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R,
Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, van der
Klei I, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P,
Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM,
Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu
X, Deter RL (2008) Guidelines for the use and interpretation of
assays for monitoring autophagy in higher eukaryotes. Autophagy
4:151-175

Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y,
Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S, Shibata
M, Yamamoto K, Kominami E, Peters C, von Figura K, Uchiy-
ama Y (2000) Cathepsin D deficiency induces lysosomal storage
with ceroid lipofuscin in mouse CNS neurons. J Neurosci
20:6898-6906

Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S,
Waguri S, Momoi T, Kominami E, Peters C, Figura K, Saftig P,
Uchiyama Y (2003) Involvement of two different cell death path-
ways in retinal atrophy of cathepsin D-deficient mice. Mol Cell
Neurosci 22:146-161

Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E,
Gotow T, Peters C, von Figura K, Mizushima N, Saftig P, Uchiy-
ama Y (2005) Participation of autophagy in storage of lysosomes
in neurons from mouse models of neuronal ceroid-lipofuscinoses
(Batten disease). Am J Pathol 167:1713-1728

Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S,
Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiy-
ama Y (2008) Inhibition of autophagy prevents hippocampal
pyramidal neuron death after hypoxic-ischemic Injury. Am J
Pathol 172:454-469

Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J,
Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K,
Chiba T (2005) Impairment of starvation-induced and constitu-
tive autophagy in Atg7-deficient mice. J Cell Biol 169:425-434

Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T,
Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of
autophagy in the central nervous system causes neurodegenera-
tion in mice. Nature 441:880-884

Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima
N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S,


http://dx.doi.org/10.2527/jas.2007-0395

Histochem Cell Biol (2008) 129:407—420

419

Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii
T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami
E, Tanaka K (2007a) Homeostatic levels of p62 control cytoplas-
mic inclusion body formation in autophagy-deficient mice. Cell
131:1149-1163

Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr., Iwata J, Komi-
nami E, Chait BT, Tanaka K, Yue Z (2007b) Essential role for
autophagy protein Atg7 in the maintenance of axonal homeostasis
and the prevention of axonal degeneration. Proc Natl Acad Sci
USA 104:14489-14494

Kominami E, Ezaki J, Muno D, Ishido K, Ueno T, Wolfe LS (1992)
Specific storage of subunit ¢ of mitochondrial ATP synthase in
lysosomes of neuronal ceroid lipofuscinosis (Batten’s disease).
J Biochem (Tokyo) 111:278-282

Kovacs AL, Rez G, Palfia Z, Kovacs J (2000) Autophagy in the epithe-
lial cells of murine seminal vesicle in vitro. Formation of large
sheets of nascent isolation membranes, sequestration of the nucle-
us and inhibition by wortmannin and 3-ethyladenine. Cell Tissue
Res 302:253-261

Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori
T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of
autophagy during the early neonatal starvation period. Nature
432:1032-1036

Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes in iron
metabolism, ageing and apoptosis. Histochem Cell Biol
doi:10.1007/s00418-008-0394-y

Liou W, Geuze HJ, Geelen MJ, Slot JW (1997) The autophagic and
endocytic pathways converge at the nascent autophagic vacuoles.
J Cell Biol 136:61-70

Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated
autophagy in aging and disease. Curr Top Dev Biol 73:205-
235

Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apglp, a novel
protein kinase required for the autophagic process in Saccharo-
myces cerevisiae. Gene 192:245-250

Meel E van, Klumperman J (2008) Imaging and imagination: under-
standing the endo-lysosomal system. Histochem Cell Biol
doi:10.1007/s00418-008-0384-0

Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell
Dev Biol 12:575-625

Mizushima N (2005) The pleiotropic role of autophagy: from protein
metabolism to bactericide. Cell Death Differ 12(suppl 2):1535—
1541

Mizushima N (2007) Autophagy: process and function. Genes Dev
21:2861-2873

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD,
Klionsky DJ, Ohsumi M, Ohsumi Y (1998a) A protein conjuga-
tion system essential for autophagy. Nature 395:395-398

Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998b) A new pro-
tein conjugation system in human. The counterpart of the yeast
Apg12p conjugation system essential for autophagy. J Biol Chem
273:33889-33892

Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y
(2003) In vivo analysis of autophagy in response to nutrient star-
vation using transgenic mice expressing a fluorescent autophago-
some marker. Mol Biol Cell 15:1101-1111

Moscat J, Diaz-Meco MT, Albert A, Campuzano S (2006) Cell signal-
ing and function organized by PB1 domain interactions. Mol Cell
23:631-640

Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol
Rev 77:759-803

Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M,
Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M,
Mizushima N, Otsu K (2007) The role of autophagy in cardio-
myocytes in the basal state and in response to hemodynamic
stress. Nat Med 13:619-624

Nakanishi H, Zhang J, Koike M, Nishioku T, Okamoto Y, Kominami
E, von Figura K, Peters C, Yamamoto K, Saftig P, Uchiyama Y
(2001) Involvement of nitric oxide released from microglia-
macrophages in pathological changes of cathepsin D-deficient
mice. J Neurosci 21:7526-7533

Nishiyama H, Fukaya M, Watanabe M, Linden DJ (2007) Axonal
motility and its modulation by activity are branch-type specific in
the intact adult cerebellum. Neuron 56:472-487

Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K,
Kominami E, Uchiyama Y (1995) Delayed neuronal death in the
CA1 pyramidal cell layer of the gerbil hippocampus following
transient ischemia is apoptosis. J Neurosci 15:1001-1011

Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe
or turncoat? Trends Neurosci 29:528-535

Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi appa-
ratus, GERL, and lysosomes of neurons in rat dorsal root ganglia,
studied by thick section and thin section cytochemistry. J Cell
Biol 50:859-886

Ohsawa Y, Isahara K, Kanamori S, Shibata M, Kametaka S, Gotow T,
Watanabe T, Kominami E, Uchiyama Y (1998) An ultrastructural
and immunohistochemical study of PC12 cells during apoptosis
induced by serum deprivation with special reference to autophagy
and lysosomal cathepsins. Arch Histol Cytol 61:395-403

Palmer DN, Martinus RD, Cooper SM, Midwinter GG, Reid JC, Jolly
RD (1989) Ovine ceroid lipofuscinosis. The major lipopigment
protein and the lipid-binding subunit of mitochondrial ATP syn-
thase have the same NH2-terminal sequence. J Biol Chem
264:5736-5740

Raben N, Roberts A, Plotz PH (2007) Role of autophagy in the patho-
genesis of Pompe disease. Acta Myol 26:45-48

Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from
scratch? Curr Opin Cell Biol 17:415-422

Sandvig K, Torgersen ML, Raa HA, Deurs B van (2008) Clathrin-
independent endocytosis: from nonexinsting to an extreme degree
of complexity. Histochem Cell Biol doi:10.1007/s00418-007-
0376-5

Schworer CM, Mortimore GE (1979) Glucagon-induced autophagy
and proteolysis in rat liver: mediation by selective deprivation of
intracellular amino acids. Proc Natl Acad Sci USA 76:3169-3173

Schworer CM, Shiffer KA, Mortimore GE (1981) Quantitative rela-
tionship between autophagy and proteolysis during graded amino
acid deprivation in perfused rat liver. J Biol Chem 256:7652—
7658

Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of
autophagic/lysosomal protein degradation in isolated rat hepato-
cytes. Proc Natl Acad Sci USA 79:1889-1892

Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina
D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A
block of autophagy in lysosomal storage disorders. Hum Mol
Genet 17:119-129

Shibata M, Kanamori S, Isahara K, Ohsawa Y, Konishi A, Kametaka
S, Watanabe T, Ebisu S, Ishido K, Kominami E, Uchiyama Y
(1998) Participation of cathepsins B and D in apoptosis of PC12
cells following serum deprivation. Biochem Biophys Res Com-
mun 251:199-203

Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a
double-edged sword. Science 306:990-995

Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y
(2001) The pre-autophagosomal structure organized by concerted
functions of APG genes is essential for autophagosome forma-
tion. EMBO J 20:5971-5981

Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg pro-
teins in pre-autophagosomal structure organization. Genes Cells
12:209-218

Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-
Rauch R, Janssen PM, Blanz J, von Figura K, Saftig P (2000)

@ Springer


http://dx.doi.org/10.1007/s00418-008-0394-y
http://dx.doi.org/10.1007/s00418-008-0384-0
http://dx.doi.org/10.1007/s00418-007-0376-5
http://dx.doi.org/10.1007/s00418-007-0376-5

420

Histochem Cell Biol (2008) 129:407—420

Accumulation of autophagic vacuoles and cardiomyopathy in
LAMP-2-deficient mice. Nature 406:902-906

Tanida I, Tanida-Miyake E, Ueno T, Kominami E (2001) The human
homolog of Saccharomyces cerevisiae ApgTp is a Protein-acti-
vating enzyme for multiple substrates including human Apgl2p,
GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701—
1706

Telbisz A, Kovacs AL, Somosy Z (2002) Influence of X-ray on the
autophagic-lysosomal system in rat pancreatic acini. Micron
33:143-151

Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secre-
tory sorting station. Curr Opin Cell Biol 9:527-533

Tsukada M, Ohsumi Y (1993) Isolation and characterization of autoph-
agy-defective mutants of Saccharomyces cerevisiae. FEBS Lett
333:169-174

Uchiyama Y (2001) Autophagic cell death and its execution by lyso-
somal cathepsins. Arch Histol Cytol 64:233-246

Uchiyama Y, Koike M, Shibata M (2008) Autophagic neuron death in
neonatal brain ischemia/hypoxia. Autophagy 4:1-5

Ueno T, Muno D, Kominami E (1991) Membrane markers of endo-
plasmic reticulum preserved in autophagic vacuolar membranes
isolated from leupeptin-administered rat liver. J Biol Chem
266:18995-18999

Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP,
Chait BT, Zhong Y, Heintz N, Yue Z (2006) Induction of autoph-
agy in axonal dystrophy and degeneration. J Neurosci 26:8057—
8068

Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG,
Wooten MC (2006) Signaling, polyubiquitination, trafficking,
and inclusions: Sequestosome 1/p62’s role in neurodegenerative
disease. J Biomed Biotechnol 2006:62079

@ Springer

Yamamoto A, Masaki R, Tashiro Y (1990) Characterization of the iso-
lation membranes and the limiting membranes of autophago-
somes in rat hepatocytes by lectin cytochemistry. J Histochem
Cytochem 38:573-580

Yokota S (1993) Formation of autophagosomes during degradation of
excess peroxisomes induced by administration of dioctyl phthal-
ate. Eur J Cell Biol 61:67-80

Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M,
Uchiyama Y (2006) Effects of RNA interference of Atg4B on the
limited proteolysis of LC3 in PC12 cells and expression of Atg4B
in various rat tissues. Autophagy 2:200-208

Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Le-
nardo MJ (2004) Regulation of an ATG7-beclin 1 program of
autophagic cell death by caspase-8. Science 304:1500-1502

Zhan SS, Beyreuther K, Schmitt HP (1992) Neuronal ubiquitin and
neurofilament expression in different lysosomal storage disorders.
Clin Neuropathol 11:251-255

Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, Hagberg H,
Blomgren K (2005) The influence of age on apoptotic and other
mechanisms of cell death after cerebral hypoxia-ischemia. Cell
Death Differ 12:162-176

Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg
H (2006) Different apoptotic mechanisms are activated in male
and female brains after neonatal hypoxia-ischaemia. ] Neurochem
96:1016-1027

Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007)
Regulation of autophagy by extracellular signal-regulated protein
kinases during 1-methyl-4-phenylpyridinium-induced cell death.
Am J Pathol 170:75-86



	Autophagy-physiology and pathophysiology
	Abstract
	Introduction
	What is autophagy?
	Morphological aspects of autophagy
	Molecular aspects of autophagy

	Autophagy in disease
	Defects in autophagy machinery
	Autophagy in lysosome storage disorders due to cathepsin deWciency

	Cell death and autophagy
	Concluding remarks
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


