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Abstract The basic concept, that specialized extracellular
matrices rich in hyaluronan, chondroitin sulfate proteogly-
cans (aggrecan, versican, neurocan, brevican, phosphacan),
link proteins and tenascins (Tn-R, Tn-C) can regulate cellu-
lar migration and axonal growth and thus, actively partici-
pate in the development and maturation of the nervous
system, has in recent years gained rapidly expanding experi-
mental support. The swift assembly and remodeling of
these matrices have been associated with axonal guidance
functions in the periphery and with the structural stabiliza-
tion of myelinated Wber tracts and synaptic contacts in the
maturating central nervous system. Particular interest has
been focused on the putative role of chondroitin sulfate pro-
teoglycans in suppressing central nervous system regenera-
tion after lesions. The axon growth inhibitory properties of
several of these chondroitin sulfate proteoglycans in vitro,
and the partial recovery of structural plasticity in lesioned
animals treated with chondroitin sulfate degrading enzymes
in vivo have signiWcantly contributed to the increased
awareness of this long time neglected structure.
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Introduction

It was not until 1971 that the existence of an extracellular
matrix (ECM) in the central nervous system (CNS) was
generally acknowledged (Tani and Ametani 1971). Then a
predominance of hyaluronan and chondroitin sulfate prote-
oglycans (CSPG) (Margolis et al. 1975) and the paucity of
otherwise frequent ECM molecules, like Wbronectin or col-
lagens, have been described (Carbonetto 1984; Rutka et al.
1988; Sanes 1989). Today we know that this distinctive
ECM is mainly composed of proteoglycans of the lectican/
hyalectan-family and their binding partners, hyaluronan,
link proteins and tenascins (Bandtlow and Zimmermann
2000; Novak and Kaye 2000; Rauch 1997, 2004; Ruoslahti
1996; Yamaguchi 2000). In the following, we will focus on
the structure, expression and putative functions of this
major matrix components that form this extraordinary
extracellular meshwork. Not discussed in this review are
less abundant, but nonetheless functionally important
macromolecules of the nervous system, such as reelin,
agrin and thrombospondins. For detailed information about
these large glycoproteins, which are involved in the control
of neuronal migration and establishment of synapses we
would like to refer the reader to recent reviews and publica-
tions (Bezakova and Ruegg 2003; Christopherson et al.
2005; Herz and Chen 2006; Tissir and GoYnet 2003).

Structures and ligands of the major constituents 
of the neural ECM

Proteoglycans and hyaluronan

Proteoglycans (PGs) are glycoproteins carrying, in addition
to variable numbers of N- and O-linked oligosaccharides, at
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least one glycosaminoglycan (GAG) side chain, which is
covalently bound to a core protein. The GAGs themselves
are long unbranched polymers of repetitive disaccharide
units consisting of an uronic acid (glucuronic or iduronic)
or galactose and an amino-sugar (N-acetylglucosamine or
N-acetylgalactosamine). According to the combination of
these sugars, the GAGs are subclassiWed into heparin/hepa-
ran-, keratan- or chondroitin/dermatan-sulfates (Bandtlow
and Zimmermann 2000; Kjellén and Lindahl 1991; Prydz
and Dalen 2000). The GAG chains are in general 20–200
disaccharide-repeats long. Whereas keratan sulfates are
usually attached to the core proteins via short standard N-
or O-glycan links to asparagine or serine/threonine, respec-
tively, the binding of chondroitin/dermatan sulfate and of
heparin/heparan sulfate chains is mediated by a serine resi-
due and a speciWc linker tetrasaccharide composed of a
xylose, two consecutive galactoses and a glucuronic acid
molecule. Numerous modiWcations that include O- and N-
sulfation and epimerization of glucuronic acid at the C5-
position lead to a high structural variability and open up
countless possibilities for the modulation of GAG-depen-
dent interactions (Bulow and Hobert 2006; Kusche-Gull-
berg and Kjellen 2003). Moreover, the highly negatively
charged GAGs attract and bind considerable amount of
water and cations.

In contrast to the protein-bound GAGs, hyaluronan (also
known as hyaluronic acid or hyaluronate) is incorporated
into the extracellular matrix as a core protein-free glycos-
aminoglycan (Toole 2000, 2004). Hyaluronan is a very
large linear polymer built of repetitive disaccharides units
consisting of glucuronic acid and N-acetylglucosamine.
This carbohydrate Wlament reaches a molecular mass of up
to 107 Da and extends over lengths of 2–25 �m. Unlike the
other GAGs, hyaluronan is not sulfated and the glucuronic
acid units are not epimerized.

While the more complex core protein-bound GAGs are
assembled and modiWed by a large set of glycosyl- and sul-
fotransferases, the structurally simpler hyaluronan is syn-
thesized by a single enzyme, the hyaluronan synthase
(HAS). Three vertebrate genes (HAS1, HAS2, and HAS3)

giving rise to three HAS isoenzymes have been identiWed
(DeAngelis 1999; Itano and Kimata 2002; Spicer and
McDonald 1998; Weigel et al. 1997). The HAS are rather
unique, as they catalyze the incorporation of two diVerent
monosaccharides and are, in contrast to most other glyco-
syltransferases, localized at the inner surface of the cell
membrane. From there the growing hyaluronan string
directly extrudes into the pericellular space, while being
still attached to the producing enzyme (Spicer and Tien
2004; Weigel et al. 1997).

The most prominent binding partners of hyaluronan in
the nervous system are the extracellular matrix proteogly-
cans of the lectican family (also called hyalectans)
(reviewed by Bandtlow and Zimmermann 2000; Iozzo and
Murdoch 1996; Rauch 2004; Ruoslahti 1996; Yamaguchi
2000). In mammals, four distinct lectican genes encode
brevican, neurocan, aggrecan and versican (Table 1;
Fig. 1). Shared features among these large chondroitin sul-
fate proteoglycans are the highly homologous G1 and G3
domains, which appear in rotary shadowing electron
microscopy as compact globular structures at either end of
an extended, but Xexible central region (Mörgelin et al.
1989; Retzler et al. 1996). This poorly sequence-conserved
middle part carries most of the O- and N-linked oligosac-
charides and all glycosaminoglycan side chains. It varies
among the diVerent family members in size and also in the
number of carbohydrate substitutions. Occasionally, the
GAGs might even be absent, like in a fraction of the part-
time preoteoglycan brevican, or they may be greatly dimin-
ished, as in CNS-derived aggrecan in relation to its carti-
lage counterpart. Apart from the variations within the
carbohydrate moiety, alternative splicing also greatly adds
to the structural diversity of lecticans. Four versican iso-
forms (V0, V1, V2 and V3) exist as a result of alternative
usage of two giant exons encoding the central GAG-� and
GAG-� domains (Dours-Zimmermann and Zimmermann
1994; Zako et al. 1995; Zimmermann and Ruoslahti 1989).
Versican V0 contains both of these GAG-attachment mod-
ules, whereas versican V1 and V2 include only the GAG-�
or GAG-�, respectively. Versican V3, the smallest lectican,

Table 1 Extracellular matrix 
CSPGs in the central nervous 
system

Name Core sizea GAGs Cellular origin CNS-
speciWc

Calculatedb SDS-PAGEc Type Number

Aggrecan 244 370 CS ? Neurons/astrocytes No

Versican V0 371 t550 CS 17–23 Neurons/astrocytes? No

Versican V1 263 t500 CS 12–15 Astrocytes? No

Versican V2 180 400 CS 5–8 Oligodendroglial lineage Yes

Neurocan 141 245 CS 3 Astrocytes/neurons Yesd

Brevican 97 145 CS 0–5 Glial cells/neurons Yes

Phosphacan
(-KS)

172 400 CS/(KS) 3–4 Glial cells/neurons Yes

a kDa
b Mature polypeptide
c Core glycoprotein after gly-
cosaminoglycan removal
d Minor expression in peripheral 
nervous system
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lacks both of these alternatively spliced elements and con-
sequently carries no glycosaminoglycans.

In contrast to these largely diversiWed GAG-binding
regions, the modules that form the globular G1 and G3
structures display little variability. For instance, all N-ter-
minal G1 regions of the diVerent lecticans include an
immunoglobulin (Ig)-like loop and two link-protein-like
tandem repeats that are involved in the binding of hyaluro-
nan and link proteins (LeBaron et al. 1992; Mörgelin et al.
1989; Neame et al. 1987; Rauch et al. 2004). The G3 globule
at the other end of the core protein contains a C-type
lectin-like element, which is Xanked by one or two EGF-
repeats and a Sushi (SCR/CCP) domain, respectively. The
entire G3 region is only absent in a GPI-anchored brevican-
variant arising from alternative transcription termination
(Seidenbecher et al. 1995). Recombinantly expressed G3
domains and/or the C-type lectin elements alone bind in
vitro simple carbohydrates and heparin or heparan sulfate
(Ujita et al. 1994), Wbulin-1 and -2 (Aspberg et al. 1999;
Olin et al. 2001), Wbrillin-1 (Isogai et al. 2002), sulfogly-
colipids (Miura et al. 1999) and the tenascins, Tn-C and
Tn-R (Aspberg et al. 1995, 1997; Day and Prestwich 2002;
Rauch et al. 1997). Of note, the majority of the G1- and G3-
ligands are recognized by all lecticans, albeit diVerences in
the aYnities exist. Completing the structural models of the
lecticans and their splice-variants by including the singular
GAG-attachment regions between the largely homologous
globular ends makes evident that this proteoglycan family
forms an almost perfect array of functionally closely related
but diVerently sized modular proteins (Fig. 1).

Besides the large aggregating proteoglycans of the lecti-
can family, phosphacan, a secreted CSPG-isoform of the
receptor-type protein-tyrosine phosphatase � (RPTP�),
plays a prominent role in the brain ECM (Barnea et al.
1994; Maurel et al. 1994; Shitara et al. 1994). Like the
other alternative splice products of the RPTP� gene, it is
composed of a carbonic anhydrase domain, a Wbronectin
type III repeat and a spacer element, but lacks the trans-
membrane domain and the cytoplasmic tyrosine phospha-
tase modules. An additional element, present in phosphacan
and the larger phosphatase variant, carries three to four
chondroitin sulfate chains and sporadically also a few kera-
tan sulfates (Rauch et al. 1991).

Phosphacan/RPTP� binds in a calcium-dependent man-
ner to the ECM glycoproteins tenascin-R and tenascin-C
(Milev et al. 1997; Xiao et al. 1997). It furthermore inter-
acts in vitro with various cell adhesion molecules of the
Ig-superfamily (IgCAMs) including N-CAM, Ng-CAM,
axonin-1 (TAG-1) and contactin (F3/F11) (Milev et al.
1994, 1996; Peles et al. 1995), and it binds to the extracel-
lular portion of voltage-gated sodium channels (RatcliVe
et al. 2000). The interaction with contactin and the sodium
channels seems to be mediated by the carbonic anhydrase
(CAH) domain of RPTP�/phosphacan (Peles et al. 1995;
RatcliVe et al. 2000).

Link proteins

The interaction between hyaluronan and lecticans is rein-
forced by small link proteins, collectively denominated

Fig. 1 Structural models of the chondroitin sulfate proteoglycans of the lectican family. ADAMTS cleavage sites and binding regions of the poly-
clonal antibodies used in immunohistochemical stainings displayed in the following Wgures are indicated
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HAPLNs (hyaluronan and proteoglycan binding link pro-
teins) (Spicer et al. 2003). This family of ancillary glyco-
proteins consists of four members, including the classical
cartilage link protein (HAPLN1 = Crtl1) (Neame and Barry
1993). Since its discovery several decades ago, HAPLN1
Crtl1 has also been detected in brain, where it joins two
other link proteins, the CNS-restricted HAPLN2/Bral1 and
HPLN4/Bral2 (Bekku et al. 2003; Hirakawa et al. 2000).
Only HAPLN3/Lp3 seems to be absent from the brain
parenchyma, however, being expressed by the smooth mus-
cle cells of larger blood vessels (Ogawa et al. 2004; Spicer
et al. 2003).

The structure of the link proteins strongly resembles the
globular G1 regions of lecticans, as they are all built-up of
an Ig-fold and a hyaluronan-binding tandem repeat. There
is some evidence that the interaction with lecticans may
either be mediated by the Ig-fold (aggrecan) or by the tan-
dem repeat of the link protein (versican). This functional
relationship between HAPLNs and lecticans is also reXected
in their chromosomal location and genomic organization.
Intriguingly, each of the link protein genes is paired up with
one of the lectican genes: HAPLN1 with VCAN, HAPLN2
with BCAN, HAPLN3 with AGC and HAPLN4 with NCAN
(Spicer et al. 2003). Despite this particularity, the expres-
sion and binding preferences of link proteins and lecticans
seem to be uncoupled from their genomic setup. For
instance, HAPLN1/Crtl1 is co-expressed and interacts with
aggrecan in cartilage and possibly in brain, while versican,
V0 and V1, and HAPLN3/Lp3 are both synthesized in
smooth muscle tissues and may bind to each other at these
locations (Ogawa et al. 2004). Alternatively, the same vers-
ican isoforms or neurocan may team up with HAPLN1/
Crtl1 to form ternary complexes with hyaluronan during
brain development (Hirakawa et al. 2000; Matsumoto et al.
2003; Rauch et al. 2004; Seyfried et al. 2005; Shi et al.
2004). Finally, there are strong indications that pairs of
HAPLN2/Bral1 and versican V2 (Oohashi et al. 2002) and
of HAPLN4/Bral2 and brevican associate in mature brain
tissues with hyaluronan (Bekku et al. 2003).

Tenascins

Apart from hyaluronan, lecticans and link proteins, tenasc-
ins represent the fourth class of molecules that form the
basic constituents of the brain ECM. Tenascins (Tn) are
very large multimeric glycoproteins that are well conserved
among vertebrates (reviewed by Chiquet-Ehrismann and
Chiquet 2003; Hsia and Schwarzbauer 2005; Joester and
Faissner 2001; Jones and Jones 2000). In mammals, the
family consists of four members namely tenascin-C, -R, -X
and -W (-N). The macromolecular structures of the diVerent
tenascin monomers are highly alike as they follow the same
modular arrangement. They are built of an amino-terminal

cysteine-rich oligomerization region composed of three to
four �-helical heptad repeats, EGF-like elements, Wbronec-
tin type III-repeats (FN III) and a carboxyl-terminal Wbrino-
gen-like globular domain.

The heptad domains allow an N-terminal association of
the individual subunits that primarily form homotrimers. In
tenascin-C and tenascin-W, an additional cysteine residue
in this region permits these trimers to further assemble into
large hexameric structures, the so-called hexabrachions.
Although this cysteine is also present in tenascin-R, only
trimers of this ECM molecule have been observed so far.

While the number of EGF-like repeats varies only
between the diVerent tenascins, some of the FN III domains
are also subjected to alternative splicing. Since diVerent
combinations of these variable FNIII repeats are possible,
several isoforms of the individual tenascins exist (Jones and
Jones 2000). For instance, the tenascin-C monomers bear
14.5 EGF-repeats plus 17 FN III repeats, 9 of which can be
alternative spliced. As a result, up to 27 diVerent tenascin-C
transcripts may be expressed during mouse brain develop-
ment (Joester and Faissner 1999), each subunit comprising
molecular weights in the range of 180–300 kDa. In con-
trast, tenascin-R, which includes 4.5 EGF and 9 FN III
repeats, gives rise only to two splice variants of 180 and
160 kDa per subunit. This diVerence depends on the pres-
ence or absence of a supplementary FN III module between
the FN III-repeats 5 and 6 (Fuss et al. 1993). Alternative
splicing seems also to generate diVerent isoforms of Tn-X
(Ikuta et al. 1998) and Tn-W/Tn-N, the latter representing
variants originating from the same gene (Neidhardt et al.
2003; Scherberich et al. 2004). Because the neural expres-
sion of Tn-W/Tn-N is currently still rather controversial
(Neidhardt et al. 2003; Scherberich et al. 2004) and because
Tn-X does not reach signiWcant levels in the central ner-
vous system (Matsumoto et al. 1994), we will focus in the
following only onto the two other tenascin-family mem-
bers.

Both, tenascin-C and tenascin-R bind to a wealth of
extracellular matrix and cell surface ligands (Jones and
Jones 2000). These interactions are mainly mediated by
the FN III modules. The majority of the cellular receptors
for tenascin-C and tenascin-R belong to the integrins, to
the cell surface heparan sulfate proteoglycans (syndecans,
glypicans) or to the cell adhesion molecules of the immu-
noglobulin superfamily (Ig-CAMs contactin/F11/F3, axo-
nin/TAG-1 and neurofascin). Other cell surface binding
partners are annexin II and the receptor protein tyrosine
phosphatase (RPTP-�/�). Albeit of uncertain physiological
relevance, a low aYnity of the EGF-like repeats of Tn-C
for EGF-receptors has also been reported (Swindle et al.
2001). Among the major ECM binding partners of these
tenascins are Wbronectin, phosphacan and particularly
lecticans.
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Supramolecular assembly

The ability of the brain ECM-components to selectively
aggregate, leads to the establishment of large, relatively
loose and Xexible meshworks where hyaluronan acts as
backbone. The current concept of supramolecular organiza-
tion and assembly is mainly based on aYnity measurements
in vitro (mentioned before) and on recent rotary shadowing
electron micrographs displaying the corresponding large
multi-molecular complexes (Lundell et al. 2004). In this
model, Wlamentous hyaluronan-molecules extruding from
the neuronal cell membrane associate Wrst with the G1
domains of distinct lecticans and link proteins that stabilize
the complex. At the other end of the lectican core protein,
the G3 domains engage in an interaction with one of the
arms of the tenascin oligomers. This way tenascins may
cross-link up to three (Tn-R) or up to six lecticans (Tn-C)
and consequently bridge neighboring hyaluronan/lectican/
link protein-complexes to complete the extracellular net-
work. Supposing that the diVerent components are propor-
tionally expressed, the mesh size of this structure will be
determined by the length of the tenascin arm, the distance
between the lectican G1/link protein-aggregates along the
hyaluronan molecules and most importantly by the dimen-
sion of the lectican core protein. Hence, the network would
become roughly twice as dense by replacing for instance
the V0 isoform of versican by the V2 variant and switching
from Tn-C to Tn-R. Along with the change of lectican
expression, the proportion of negatively charged carbohy-
drates and consequently the amounts of attracted water and
cations may alter the gel-like properties of the extracellular
matrix that occupies the intercellular spaces within the cen-
tral nervous system. Indeed, the estimated change of the
extracellular volume from roughly 40% in the developing
brain to about 20% in adults (Nicholson and Sykova 1998)
may at least partly be linked to the general tendency to
express smaller lectican variants in the course of tissue
maturation.

Expression and distribution

Gaining a clear insight into the expression and distribution
of ECM components in development and adulthood has not
been an easy task as especially antibodies widely employed
in the earlier immunohistochemical studies were often not
monospeciWc. Since ex vivo isolates of the highly glycosyl-
ated molecules were frequently used for immunization,
several monoclonal antibodies have recognized carbohy-
drate epitopes, which could be found in glycans of several
glycoproteins and/or were sometimes only present in sub-
fractions of a particular ECM component (Lander et al. 1997;
Matthews et al. 2002; Yamagata et al. 1993; Zako et al.

2002). Another cause for antibody cross-reactivity has also
been the high protein sequence conservation, as in the G1
and G3 domains of the lecticans, and the consequent epi-
tope sharing (Bignami et al. 1993; Perides et al. 1993;
Yamada et al. 1997b). With the increasing availability of
cDNAs and the advent of recombinant expression systems
in bacteria, however, antibody production could be directed
against more selective sites in little or non-glycosylated
regions of the proteins (Milev et al. 1998b; Schmalfeldt
et al. 1998; Zimmermann et al. 1994) (Fig. 1). Conse-
quently, a set of highly speciWc and sensitive polyclonal
antibodies with well-deWned immunoreactivity has
revealed a more consistent picture of ECM expression.

Tenascins C and R, phosphacan, most of the link pro-
teins and all lecticans, including alternative splice-variants,
are at some stage present in the central nervous system
(Bandtlow and Zimmermann 2000; Jones and Jones 2000;
Rauch 2004; Yamaguchi 2000). While Tn-R, phosphacan,
HAPLN2/Bral1, HAPLN4/Bral2, brevican, neurocan and
versican V2 are uniquely expressed in brain and spinal
cord, Tn-C and the versican isoforms V0, V1 and V3 are
also found in many mesenchymal tissues during embryo-
genesis and later in association with remodeling processes
induced by, e.g., injury, neovascularization, inXammation
or neoplasia. Likewise, aggrecan and HAPLN1/Crtl1,
which participate in the establishment of some specialized
brain ECMs, are primarily components of developing and
mature cartilage. Finally, hyaluronan, which interacts with
all the lecticans, displays the widest tissue distribution,
being (also outside the nervous system) most abundantly
produced by morphogenetically active zones during
development and adult remodeling processes (Toole 2001,
2004).

Juvenile matrix type

During late embryonic and early postnatal phases of mam-
malian development, a juvenile type of extracellular matrix
is initially formed in the CNS (Fig. 2). It mostly consists of
hyaluronan, neurocan, versican V0, versican V1, tenascin-
C and HAPLN1/Crtl1 (Milev et al. 1998b; Rauch 2004). In
addition, prominent CNS-expression of aggrecan has been
reported in chick embryos (Schwartz and Domowicz 2004),
while only very small amounts have been detected in prena-
tal rodent brains (Matthews et al. 2002; Milev et al. 1998c).
Cellular origin of neurocan and the large versican variants
are neurons (Engel et al. 1996; Yamagata and Sanes 2005),
whereas aggrecan appears to be mainly expressed by cells
of astroglial lineage at this early time point (Domowicz
et al. 2008). The transient deposition of neurocan and versi-
can V0/V1, peaks in rats shortly after birth (Fig. 3) (Meyer-
Puttlitz et al. 1995; Milev et al. 1998a). Preferential accu-
mulations are the marginal zone and the subplate of the
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neocortex, parts of the hypothalamus, the amygdala and the
developing hippocampus and dentate gyrus (Meyer-Puttlitz
et al. 1996; Miller et al. 1995; Popp et al. 2003). Early post-
natally, neurocan and the versican isoforms V0 and V1 are
also found in the presumptive white matter and in the inter-
nal granule cell layer of the cerebellum (Meyer-Puttlitz
et al. 1996; Popp et al. 2003). Starting from the second
week after birth they are down-regulated and Wnally only
persist in a few specialized locations in the adult CNS.

The time course of this early lectican expression is paral-
leled by their ligands, hyaluronan and the HAPLN1/Crtl1
link protein. In fact, the content of hyaluronan peaks in
rodent brain shortly after birth, being subsequently reduced
to one-fourth of its maximal level in the adult tissue (Mar-
golis et al. 1975). In the developing cerebellum, hyaluronan
is mostly present in the granular cell layer and prospective
white matter (Ripellino et al. 1988), where it seems to be
organized into extracellular arrays of Wber-like structures
(Baier et al. 2007). There is evidence that glial cells synthe-
size hyaluronan in the early phase of the CNS formation
(Deyst and Toole 1995), the hyaluronan synthase responsi-
ble for its production at this early stage has yet to be identi-
Wed. Similar to hyaluronan, HAPLN1/Crtl1, which may

stabilize the interaction of hyaluronan with neurocan, versi-
can and aggrecan, is up to about postnatal day 10 increas-
ingly expressed and then gradually diminishes in the
maturating nervous tissue (Hirakawa et al. 2000).

A relatively early CNS expression is also observed for
the glia-derived ECM glycoprotein Tn-C. It Wrst accumu-
lates around the Wbrous processes of radial and Bergmann
glial cells that direct the migration of neuronal precursors
during cortical and cerebellar development, respectively
(Crossin et al. 1986; Prieto et al. 1990). In rodents, it is
rather widely distributed shortly after birth and displays at
least in the cerebral cortex, hippocampus and cerebellum
partial overlaps with neurocan and versican V0/V1 deposi-
tions (Bartsch et al. 1992; Laywell and Steindler 1991;
Meyer-Puttlitz et al. 1996; Popp et al. 2003). Particularly
intriguing is the transient association of Tn-C with the glial
boundary tissues surrounding the functional sets of neu-
rons, like for instance the vibrissae-related barrel Welds of
the developing somatosensory cortex (Steindler et al.
1989). About 2–3 weeks after birth, Tn-C levels decrease
continuously, maintaining only a signiWcant expression
level in the neurogenetically active areas of the adult brain
that encompass the subependymal zone and the hippocampus

Fig. 2 Immunohistochemical 
analyzes of the lectican distribu-
tion in the head region of E18.5 
mouse embryos. Note the strong 
brain-speciWc staining of anti-
bodies against neurocan. The 
antibodies against versican de-
tect at this time point mainly the 
versican splice-variants V0 
(GAG-� and GAG-� reactive) 
and V1 (only GAG-� reactive). 
These versicans are deposited in 
the CNS and in most of the mes-
enchymal tissues of the embryo. 
Aggrecan is practically absent 
from the brain, but is strongly 
expressed in cartilaginous tis-
sues. No brevican staining can 
be detected at this embryonic 
stage. Sagittal sections. Bar 
100 �m
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(Bartsch et al. 1992; Dorries and Schachner 1994; Gates
et al. 1995; Thomas et al. 1996).

Mature matrix type

Initiating about 2 weeks after birth, a major remodeling
process takes place (Fig. 3), which replaces most of the
juvenile type of matrix by its mature form (Rauch 2004).
This exchange transforms the relatively loose embryonic
and early postnatal ECM to a signiWcantly Wrmer mesh-
work, which is subsequently maintained throughout adult-
hood. The large majority of the early matrix components
are along the conversion substituted by a diVerent, but
homologous set of ECM proteins that include versican V2,
aggrecan, brevican, phosphacan, tenascin-R and the brain
link proteins HAPLN2/Bral1 and HAPLN4/Bral2 (Bekku
et al. 2003; Hirakawa et al. 2000; Meyer-Puttlitz et al.
1995; Milev et al. 1998b; Pesheva et al. 1989).

In the adult CNS, various combinations of lecticans and
link protein, which are generally associated with hyaluro-
nan, Tn-R and phosphacan condense at some strategic
locations (Fig. 4.). Versican V2 and the secreted brevican
isoform emerge around the second and third week postpar-
tum and subsequently evolve to the predominant constitu-
ents in the adult brain and spinal cord (Schmalfeldt et al.
1998; Yamaguchi 1996). Matrices that contain mainly
versican V2 and some brevican are most prevalent in the
white matter surrounding the myelinated Wbers of all cali-
bers (Ogawa et al. 2001; Schmalfeldt et al. 2000). Particu-
larly dense accumulation of versican V2, HAPLN2/Bral1,
Tn-R and phosphacan appear as ring-like structures around
the CNS nodes of Ranvier (Dours-Zimmermann et al.
unpublished; Melendez-Vasquez et al. 2005; Oohashi et al.
2002; Pesheva et al. 1989; Xiao et al. 1997). Origins of the
Tn-R and versican V2 deposits in the white matter are pri-
marily oligodendrocytes and their precursors (Asher et al.
2002; Pesheva et al. 1989; Schmalfeldt et al. 2000), while
HAPLN2/Bral1 expression has been attributed to neurons
(Oohashi et al. 2002) or oligodendrocytes (Carulli et al.
2006). Interestingly, the brevican expression shifts at the
end of myelination from oligodendroglial to astrocytic line-
age in the white matter (Ogawa et al. 2001). Starting from
postnatal day 28, astrocytes seem to give rise to another
particularly brevican-rich zone that forms after completion
of the neuronal migration in the granular cell layer of the
rat cerebellum. This more compact extracellular matrix
ensheathes cerebellar glomeruli, in which the incoming
mossy Wbers contact the local neuronal processes (Yamada
et al. 1997a).

The by far best studied extracellular matrix condensation
in the adult central nervous system is the perineuronal net
(PNN). This lattice-like structure engulfs the cell bodies,
proximal dendrites and axon initial segments of speciWc

Fig. 3 Time course of lectican levels in extracts of embryonic and
postnatal rat brains. Note the transition from the expression of the juve-
nile-type of matrix to its mature form around postnatal day 20.
Diagrams adapted from (Milev et al. 1998b)
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subsets of neurons and embeds, with exception of the syn-
aptic clefts, the presynaptic boutons that contact them
(Bruckner et al. 1993, 2006; Celio and Blumcke 1994;
Celio et al. 1998; Galtrey and Fawcett 2007; Murakami and
Ohtsuka 2003; Rhodes and Fawcett 2004; Yamaguchi
2000). PNNs can be observed in many areas of the CNS
including the cerebral cortex, the hippocampus, the thala-
mus, the cerebellum, the brain stem and the spinal cord.
They most frequently surround parvalbumin-expressing
GABAergic interneurons and certain cortical pyramidal
neurons, as well as projection and large motor neurons of
the brain stem and spinal cord. The formation of perineuro-
nal nets occurs relatively late in postnatal development (in
rodents 2–5 weeks after birth) and coincides with the end-

ing of the experience-dependent reWnement of the synaptic
network and the closure of the critical period, e.g., in the
visual system and spinal cord (Guimaraes et al. 1990; Kalb
and HockWeld 1988, 1990; Pizzorusso et al. 2002).

This specialized matrix consists of hyaluronan, diVerent
lecticans, the link proteins HAPLN1/Crtl1 and HAPLN4/
Bral2, Tn-R, and phosphacan (Asher et al. 1995; Bekku
et al. 2003; Bruckner et al. 2000; Carulli et al. 2006;
Haunso et al. 1999; Maeda et al. 1995). The perineuronally
accumulating hyaluronan is synthesized by HAS2 and
HAS3 expressed in the net-carrying neurons, while HAS1
is generally absent from the CNS (Carulli et al. 2006,
2007). During the PNN-formation, HAS3 may slightly pre-
cede HAS2. The expression of both of these hyaluronan

Fig. 4 Localization of lecticans and tenascins in coronal sections
through adult cerebellum and medulla at Bregma ¡6.18 mm. Note the
perineuronal net staining of aggrecan, tenascin-R and phosphacan in
the deep cerebellar nuclei (DCN) and the brain stem (BS). Brevican and
neurocan are only present in some of the PNNs. Versican V2, which
stains exclusively with GAG-�-, but not with GAG-�-speciWc antibod-

ies is accumulating at the nodes of Ranvier in the white matter (WM),
while brevican staining is rather diVused in the myelinated Wber tracts.
Versican V0 and V1, which are recognized by the GAG-�-speciWc
antibodies are absent from these brain regions in adult mice. Graphics
modiWed from the Allen Brain Atlas (http://www.brain-map.org) (Lein
et al. 2007)
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synthases is subsequently attenuated, but pertains through-
out adulthood.

Among the lectican family members, aggrecan is the
most common perineuronal net component. Although pres-
ent in all PNNs, it may contribute to a certain sub-specializa-
tion by varying its glycan structures between distinctive
sets of neuronal coats (Matthews et al. 2002). Brevican and
neurocan display in many CNS regions an expression pat-
tern similar to aggrecan (Fig. 4) and there is indeed some
evidence that they co-localize within the same perineuronal
structure (Carulli et al. 2006; Galtrey et al. 2008). At least
hyaluronan, aggrecan and Tn-R seem to be rather uniformly
distributed within a single net covering the cell body, proxi-
mal dendrites and the axon initial segment (AIS) irrespec-
tive of the presence of synapses (Bruckner et al. 2006). In
contrast, a certain preference of brevican deposition around
the AIS has been observed in neuronal cell cultures (Hed-
strom et al. 2007; John et al. 2006). Using a monoclonal
antibody (12C5) against the hyaluronan-binding G1
domain of versican, immunohistological examinations of
brain and spinal cord sections have also suggested that the
fourth lectican member is present in PNNs (Carulli et al.
2006; Deepa et al. 2006). Surprisingly, none of our antibod-
ies against the two GAG-attachment regions (Fig. 1) has
displayed a similar perineuronal net staining (Fig. 4). It is
therefore conceivable that the 12C5 antibody, in fact does
not detect intact versican V2 in the PNNs, but rather a pro-
teolytic remnant of the early postnatal versican V0 and V1
expressions that correspond to the versican fragment, for-
merly named as glial hyaluronate-binding protein (GHAP)
or hyaluronectin (Delpech and Halavent 1981; Perides et al.
1989). Also neurocan in the PNNs may at least partly be
present in form of a hyaluronan-binding truncation product
(Neurocan-N) (Deepa et al. 2006), which eventually has
become trapped after the conversion of the juvenile matrix.

No matter whether the lecticans are intact or truncated,
their interactions with hyaluronan seem to be either stabi-
lized by HAPLN1/Crtl1 or by HAPLN4/Bral2 (Bekku et al.
2003; Carulli et al. 2006, 2007). Both of these link proteins
form an integral part of perineuronal nets. Whereas HAP-
LN1/Crtl1 seems to bind to its classical partner aggrecan
and probably also to neurocan or neurocan-N, there is some
indication from knockout mice that brevican may be
required for the PNN localization of HAPLN4/Bral2
(Bekku et al. 2003).

Most of the perineuronal net constituents seem to be
expressed by the engulfed neurons themselves (Carulli
et al. 2006). Nonetheless, contributions from surrounding
astrocytes that extend cellular processes into the reticular
structure cannot be excluded (Carulli et al. 2007). This con-
cerns particularly brevican and to some extent also neuro-
can, which may be produced bilaterally by the ensheathed
neurons and the contacting astrocytes. Co-culture experi-

ments of primary hippocampal neurons and glial cells
indeed revealed that the perineuronal deposits of brevican
are in vitro primarily astrocyte-derived (John et al. 2006),
although perineuronal net-like structures develop appar-
ently also in the virtual absence of glial cells (Miyata et al.
2005).

Lesion-associated reactive matrix

Once established, the composition of the mature type of
extracellular matrix is rather stable with little or no turnover
of their components. This changes, however, radically,
when lesions to the adult central nervous system occur.
Under these circumstances, the expression of various extra-
cellular matrix molecules is highly up-regulated and major
depositions are observed in and around the lesion site, in
particular, in association with the glial scar tissue that
forms (Bradbury and McMahon 2006; Galtrey and Fawcett
2007; Gonzenbach and Schwab 2008; Morgenstern et al.
2002; Zurn and Bandtlow 2006). The freshly produced
ECM components may be secreted by reactive astrocytes,
oligodendrocyte precursors, microglia/macrophages and
eventually by meningeal cells. The lesion and consequent
reactive processes induce a matrix accumulation that
strongly resembles the juvenile-type of meshwork previ-
ously observed during early nervous system development.
For instance, surgical incisions in the cerebral cortex or spi-
nal cord provoke a relatively fast and transient up-regula-
tion of Tn-C and neurocan (Asher et al. 2000; Haas et al.
1999; Jones et al. 2003; Laywell et al. 1992; Matsui et al.
2002; McKeon et al. 1999; Tang et al. 2003). Also the
expression of versican V2, brevican and phosphacan appear
to be aVected. Yet, recent reports about alterations in the
production of versican V2 (direction of regulation) and
brevican (timing) are somewhat controversial (Asher et al.
2002; Jones et al. 2003; Tang 2003). There are nevertheless
indications that the lecticans brevican, aggrecan and versi-
can V2 follow the time course of phosphacan, whose con-
tent Wrst diminishes during the acute phase and then
increases in a late attempt to restore the mature type of
matrix at the injury site (Lemons et al. 2001; Tang et al.
2003).

A similar post-traumatic upregulation of Tn-C and lecti-
cans has also been observed after disruption of sensory
axons at the dorsal root (Beggah et al. 2005; Pindzola et al.
1993). Importantly, this type of lesion near the PNS/CNS
interface lacks a scar formation within the CNS, but still
leads to a reactive gliosis in the dorsal root entry zone
(DREZ) and Wallerian degeneration of the central axon
branches, now separated from their cell bodies. Despite the
absence of a glial scar tissue, elevated depositions of neuro-
can and versicans (also V1 isoform) are prominent in the
DREZ suggesting that the remodeling process temporally
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reactivates a juvenile matrix-like expression proWle analo-
gous to direct damages to the CNS.

Matrix turnover

The rapid switch from embryonic and early postnatal extra-
cellular matrices to their mature form in the normal adult
CNS (Rauch 2004), the fast disappearance of CSPGs from
the predestined axonal pathways observed in the develop-
ing periphery (Landolt et al. 1995; Oakley and Tosney
1991), as well as the reactive changes following nervous
system lesions (Galtrey and Fawcett 2007; Zurn and Bandt-
low 2006) cannot solely be attributed to adjustments in the
ECM expression patterns, but must also depend on highly
active proteolytic processes (Agrawal et al. 2008; Ethell
and Ethell 2007; Flannery 2006; Gottschall et al. 2005;
Milward et al. 2007; Porter et al. 2005). The selective turn-
over of lecticans may in this context be essential for alter-
ing the cell migration and axon growth properties of many
nervous tissues. Metalloendopeptidases of the ADAMTS
family seem to be primarily responsible for the lectican
catabolism (ADAMTS: a disintegrin and metalloproteinase
with thrombospondin motifs). Conversely, matrix metallo-
proteases (MMPs) may only play a subordinate role in the
proteoglycan degradation, but they could preferentially tar-
get the link proteins and tenascins of the central nervous
system. In any case, the proteolysis is tightly controlled by
the tissue inhibitors of metalloproteinases (TIMPs), which
are physiological antagonists of both enzyme types, MMPs
(TIMP-1 to -4) and ADAMTSs (TIMP-3).

Various ADAMTS-enzymes cleave lecticans at a few
speciWc sites in vitro and corresponding digestion products
have been identiWed in vivo (Flannery 2006; Gottschall et al.
2005; Porter et al. 2005). The secreted ADAMTSs are close
relatives of the cell membrane-bound ADAM metallopro-
teases. ADAMs and ADAMTSs are expressed as zymogens
containing a prodomain and a zinc-binding catalytic element
linked to a disintegrin-like motif. In ADAMTSs, several
additional modules may control tissue localization and con-
tribute to the substrate speciWcity. This C-terminal set of
ancillary domains includes a central thrombospondin type I
repeat, a cysteine-rich region, a spacer element and several
supplementary thrombospondin motifs in most of the family
members. The ADAMTS-zymogens are in the trans-Golgi
or at the cell surface activated by N-terminal propeptide
cleavage mediated by furin or furin-like convertases. Addi-
tional proteolytic or autocatalytic removal of a C-terminal
portion has been demonstrated to modulate the enzymatic
activity of some of these metalloproteases (Gao et al. 2002;
Rodriguez-Manzaneque et al. 2000; Zeng et al. 2006).

Five ADAMTS sites have been characterized in the
aggrecan core protein (Caterson et al. 2000; Lemons et al.

2001), two to four in the proteoglycan isoforms of versican
(V2–V0) (Jonsson-Rylander et al. 2005; Sandy et al. 2001;
Westling et al. 2004) and one in brevican (Matthews et al.
2000; Yamada et al. 1995). Interestingly, in all of these
lecticans one ADAMTS-site is located next to the globular
G1-domain allowing the selective release of the large
GAG-carrying portions from the complex with hyaluronan
and link proteins. Finally, also neurocan, which is in adult
tissues often present in form of two well-deWned N- and C-
terminal fragments, may be cleaved by an ADAMTS- or
MMP-protease. Based on comparisons of known sub-
strates, speciWc sites for by MMP-2- and ADAMTS-pro-
cessing have been postulated. Whereas MMP-2 indeed
cleaves neurocan in vitro, the susceptibility to ADAMTS-
digestion still has to be conWrmed in an experimental set-
ting (Sandy et al. 2001; Turk et al. 2001).

Among the 19 ADAMTSs, seven exhibit cleavage
capacity towards lecticans (ADAMTS-1, -4, -5, -8, -9, -15
and -20; ADAMTS-5 and -11 are identical). The classical
aggrecanases are ADAMTS-4 and -5 (Abbaszade et al.
1999; Tortorella et al. 1999). Albeit less eYcient, aggrecan-
processing activities have also been observed of
ADAMTS-1, -8, -9 and -15 (Collins-Racie et al. 2004;
Flannery 2006; Kuno et al. 2000; Somerville et al. 2003).
At least four ADAMTS-proteases including ADAMTS-1,
-4, -9 and -20 recognize versican substrates in vitro (Sandy
et al. 2001; Silver et al. 2008; Somerville et al. 2003; Wes-
tling et al. 2004), whereas only cleavage by ADAMTS-4
and -5 has been demonstrated for brevican (Matthews et al.
2000; Nakada et al. 2005; Nakamura et al. 2000).

Until now, only a few studies have explored the expres-
sion of distinct ADAMTSs during nervous system develop-
ment and virtually no data are available for peri- and early
postnatal phases that are particularly interesting regarding
the remodeling of the neural ECM. From the limited
insights one can currently conclude, that ADAMTS-1 and
-9 are expressed relatively early in the embryonic CNS
(Gunther et al. 2005; Jungers et al. 2005; Thai and Iruela-
Arispe 2002), while ADAMTS-4 appears only in adult ner-
vous tissues (Abbaszade et al. 1999; Jungers et al. 2005).
Moderate to low expression of ADAMTS-4, for instance
has been detected in pyramidal neurons of various cortical
areas and in granule cells of the dentate gyrus in normal
adult brain (Yuan et al. 2002).

This base-expression of ADAMTSs rises considerably in
the presence of diVerent types of lesions. After a kainate-
induced excitotoxic insult, a transient up-regulation of
ADAMTS-4 and ADAMTS-1 coincides with a marked
increase of brevican proteolysis (Mayer et al. 2005; Yuan
et al. 2002). A similar reaction is also observed in an experi-
mental model of cerebral ischemia (Cross et al. 2006).
Moreover, motor axon disruption induces the ADAMTS-1
production in the aVected neurons (Sasaki et al. 2001) and
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there is growing evidence that the same enzyme is also
over-expressed in association with various neurodegenera-
tive disorders (Miguel et al. 2005; Satoh et al. 2000). In
addition, glioblastomas display elevated levels of brevican
and its proteolytic fragments (Nutt et al. 2001) are associ-
ated with an increased expression of ADAMTS-5 and,
although somewhat controversial, possibly also with
ADAMTS-4 (Held-Feindt et al. 2006; Nakada et al. 2005).
This close relationship between ECM remodeling and
ADAMTS expression under traumatic and pathogenic con-
ditions, provides an indirect indication for an analogous
functional involvement of ADAMTSs in the matrix conver-
sion of normal neural development.

Putative functions

The progress in unraveling the precise functions of the
extracellular matrix in the central nervous system has for
long been rather slow due to the high structural variability
of its main constituents and the great complexity of the
dynamic remodeling process involved in normal develop-
ment and disease conditions. Albeit correlations of the dis-
tribution of speciWc ECM components with cellular
processes like proliferation, migration, axonal growth or
synapse formation have been very valuable for gaining
insights into the putative functions in vivo, they may have
been somewhat distorted by the fact that most antibodies
used in these studies are unable to discriminate between
intact and ADAMTS- or MMP-processed forms of a particular
molecule. This distinction could be of considerable

importance as the speciWc cleavage may attenuate or even
neutralize certain ECM functions without becoming appar-
ent in the immunohistological stainings.

Moreover, partial overlapping rather than completely
diVerent functions of structurally related matrix proteins
may be responsible for the unexpectedly mild phenotypes
of several knockout mice, while the absence of potential
key components has in contrast resulted in embryonic or
perinatal lethality that prevents the study of their role in the
mainly postnatal neural development (Table 2). Neverthe-
less, evidence for an extracellular matrix involvement in
neural migration, axon guidance, plasticity restriction and
Wber tract stabilization has in recent years come from vari-
ous in vitro and in vivo observations.

Axon growth inhibition

Phosphacan and all lecticans of the central nervous system
inhibit in their intact form axonal growth in vitro (Bandtlow
and Zimmermann 2000; Yamaguchi 2000). This functional
property appears to be mostly core protein-dependent in
versican V0, V1 and V2 (Dutt, Stöckli and Zimmermann
unpublished; Niederöst et al. 1999; Schmalfeldt et al.
2000;), neurocan (Margolis et al. 1996) and phosphacan
(Maeda and Noda 1996), whereas no inhibition of brevican
(Yamada et al. 1997a) and cartilage-derived aggrecan
(Snow et al. 1990) has been detected after chondroitinase
ABC digestion. Notably, we also observed two- to three-
fold reductions, but never an abolition of the inhibitory
capacity of versican V2 in stripe choice experiments after
complete glycosaminoglycan-removal (Schmalfeldt et al.

Table 2 Available ECM-knockout mouse strains

LTP Hippocampal long-term potentiation, EAE experimental autoimmune encephalomyelitis, PNN perineuronal net, ND not described

Brevican (Brakebusch et al. 2002); neurocan (Zhou et al. 2001); versican (Mjaatvedt et al. 1998); aggrecan (Watanabe et al. 1994); RPTP-�/phos-
phacan (Harroch et al. 2000, 2002; Niisato et al. 2005); TnR (Bruckner et al. 2000; Freitag et al. 2003; Haunso et al. 2000; Montag-Sallaz and
Montag 2003; Saghatelyan et al. 2004; Weber et al. 1999); TnC (Evers et al. 2002; Forsberg et al. 1996; Fukamauchi et al. 1996; Kiernan et al.
1999; Saga et al. 1992); HAPLN1/Crtl1 (Watanabe and Yamada 1999); HAS2 (Camenisch et al. 2000); HAS3 (Bai et al. 2005)

Gene Viability CNS phenotype

Brevican (Bcan) Normal Reduced LTP

Neurocan (Ncan) Normal Reduced LTP

Versican (Vcan/hdf-strain) Die at E10.5 –

Aggrecan (Acan/cmd-strain) Die at birth ND

RPTP-�/phosphacan (Ptprz1) Normal Enhanced LTP; impaired recovery from EAE 
(transmembrane variants?)

Tenascin-R (Tnr) Normal Aberrant PNNs; reduced conduction velocity; 
disturbed neuroblast migration in olfactory bulb; 
some behavioral abnormalities

Tenascin-C (Tnc) Normal Reduced LTP; mild behavioral abnormalities

HAPLN1/Crtl1 (Hapln1) Die at birth ND

HAS2 (Has2) Die at E10.5 –

HAS3 (Has3) Normal ND
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2000). This moderate decrease might be related to the par-
tial collapse of the extended core protein structure after
elimination of the highly negatively charged chondroitin
sulfate side chains.

The axonal growth inhibition is likely dependent on the
presence of a pericellular hyaluronan coat that covers many
cell types and often includes variable amounts of lecticans,
link proteins and tenascins (Evanko et al. 2007). Synthesis
of hyaluronan alone promotes in various cell types the for-
mation of plasma membrane protrusions (Kultti et al. 2006;
Rilla et al. 2008). It is therefore conceivable that a coat con-
taining exclusively hyaluronan has a similar eVect in gener-
ating growth cone Wlopodia exploring the environment at
the tip of growing axons. In situations, in which these Wlo-
podia encounter areas expressing lecticans, they may incor-
porate the CSPGs into the pericellular hyaluronan structure
and consequently increase the hydration capacity and thus
the thickness of their coat. Depending on the extent of this
coat swelling, the contacts to the surface of neighboring
cells or the extracellular matrix may be increasingly com-
promised by sterical hindrance. Accordingly, the advancing
growth cone should slow down, turn away or retract from
the lectican-containing zones. Furthermore, the expression
level, core protein size and carbohydrate substitution of the
encountered lecticans would control the coat dimensions
and thus, modulate the inhibitory eVect. In line with this
hypothesis are the concentration-dependency of the versi-
can inhibition (Schmalfeldt et al. 2000) and a certain ten-
dency to accentuate the eVect by using larger splice-
variants in vitro (Dutt, Stöckli and Zimmermann, unpub-
lished). In addition, neurons may regulate the coat size by
the extent of the hyaluronan synthesis and/or by secreting
ADAMTS-proteases, which would reduce the inhibitory
activity through release of the GAG-carrying core protein
portions from the pericellular structure.

While high-versican concentrations provoke retraction,
low concentrations still allow a reduced growth, but
promote enlargement of presynaptic varicosities in chick
retinal axons in vitro (Yamagata and Sanes 2005). This
Wnding is corroborated by RNA interference experiments
in vivo, where depletion of versican causes a signiWcant
size reduction of the varicosities in the retinal arbors of the
optic tectum suggesting that low-versican expression
attenuates axonal growth and induces lamina-speciWc
presynaptic maturation. Conversely, high expression of
versican V0/V1 may also contribute to the formation of
molecular barriers that block axon extension and may in
addition, direct migratory neural crest cells in the develop-
ing peripheral nervous system (Dutt et al. 2006; Landolt
et al. 1995; Oakley and Tosney 1991). Unfortunately,
these suspected modulator functions of the V0/V1 iso-
forms cannot be veriWed in versican null mice (hdf strain),
as they suVer from problems in heart segmentation and

consequently die early, at around embryonic day 10.5
(Mjaatvedt et al. 1998).

Although the highest matrix protein expression in the
CNS during early neural development has been attributed
to Tn-C and neurocan, their in vivo functions in the juve-
nile-type of matrix are still largely unknown. Single knock-
outs of neurocan and Tn-C showed no apparent anatomical
abnormalities in the CNS (Steindler et al. 1995; Zhou et al.
2001). A potential compensation by up-regulation of the
closely related brevican or Tn-R, respectively, has not been
observed. Nonetheless, recent generation of a Tn-C, Tn-R,
neurocan and brevican quadruple knockout suggested a
partial replacement of the tenascins by Wbulin-1 and -2,
which are generally not expressed in the brain parenchyma,
but may similarly cross-link the C-terminal domains of the
remaining lecticans (Rauch et al. 2005). This complex may
however, be less stable as suggested by the partly disturbed
structure of the perineuronal nets in these quadruple and in
the Tn-R single knockout mice (Bruckner et al. 2000;
Haunso et al. 2000; Rauch et al. 2005; Weber et al. 1999).

Regulation of plasticity

There are increasing indications that the transition from the
juvenile type of matrix to its mature form terminates the
highly dynamic periods of cell and axonal migrations and
restricts plasticity and regeneration in the adult central ner-
vous system (Galtrey and Fawcett 2007; Rauch 2004). In
white matter, specialized matrices rich in brevican and
versican V2 contribute to axon growth inhibitory environ-
ment associated with CNS myelin (Niederöst et al. 1999)
and possibly prevent abnormal axon branching by accumu-
lating at the nodes of Ranvier. In addition, the establish-
ment of perineuronal nets seems to stabilize the neuronal
circuitry by suppressing the formation of new synaptic
contacts (Galtrey and Fawcett 2007; HockWeld et al. 1990;
Rauch 2004; Yamaguchi 2000). These speculations that
are mostly based on the inhibitory properties of lecticans in
vitro, have been further nourished by observations that
injections of bacterial chondroitinase into the visual cortex
of rats aVect the integrity of perineuronal nets and restore
ocular dominance plasticity even after closure of the criti-
cal period (Berardi et al. 2004; Hooks and Chen 2007; Piz-
zorusso et al. 2002, 2006). Similarly enhanced plasticity
after chondroitinase treatment has been reported from
experimental brain and spinal cord injuries (Barritt et al.
2006; Bradbury et al. 2002; Moon et al. 2001). In these
studies, the digestion of chondroitin sulfates at the lesion
sites resulted in increased axonal sprouting and some
axonal re-growth across the normally non-permissive glial
scar tissue, which expresses CSPGs abundantly. In addi-
tion, in adult brevican and neurocan double-knockout
mice, the obstruction of the lectican-rich dorsal root entry
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zone appears to be partly lifted, as a signiWcant number of
sensory axons cross back into the DREZ after proximal
nerve disruption and subsequent growth stimulation
through a late conditioning lesion of the peripheral branch
(Quaglia et al. 2008). Because the suppression of a single
myelin- or ECM-associated CNS-inhibitor typically leads
to less than 10% robust re-growth of cut axons in all diVer-
ent experimental lesion systems tested (Bradbury and
McMahon 2006; Gonzenbach and Schwab 2008; Zheng
et al. 2006), such multimodal strategies may be required to
achieve an improved neutralization of the inhibition and a
more eVective promotion of the regenerative response in
the CNS.

Other putative functions

Apart from these putative roles connected to axon growth
inhibition, the condensed matrices in the mature central
nervous system may take part in axo-glial interactions and
regulate the ion homeostasis required for the rapid and
timely induction and propagation of action potentials at the
axon initial segments (AIS) and at the nodes of Ranvier,
respectively (Bruckner et al. 1993, 2006; Hedstrom and
Rasband 2006; Poliak and Peles 2003; Salzer 2003). In this
context it is interesting to note, that neurocan, brevican,
RPTP-�/phosphacan and also Tn-C null-mice display cer-
tain alterations of hippocampal long-term potentiation (in
RPTP-� knockout mice probably only linked to transmem-
brane variants), while a decreased axonal conductance has
been measured in the optic nerve of Tn-R mutants (Brak-
ebusch et al. 2002; Evers et al. 2002; Weber et al. 1999;
Zhou et al. 2001).

It has also been suggested that proteoglycans in the
extracellular meshwork surrounding myelin-free and thus,
exposed nodal regions and axon initial segments may be
implemented in neuroprotective functions (Miyata et al.
2007; Morawski et al. 2004).

Finally, abrogation of Tn-R expression impairs in adult
knockout mice the detachment and radial migration of neu-
roblasts into the outer layers of the olfactory bulb. In con-
trast, ectopic expression reroutes the neuroblasts that
originate from the subventricular zone of the lateral ventri-
cles and Wrst move tangentially in the rostral migratory
stream. This suggests that Tn-R alone may also act as posi-
tive cue for adult neuroblast migration (Saghatelyan et al.
2004).

Despite the panoply of putative functions of the extra-
cellular matrix in the nervous system presented in the last
years, the picture of its main roles in development and
maturation has remained largely fragmented. It is to hope,
that after a long period of neglect, the recently renewed
research interests will boost the assembly of this fascinating
puzzle.
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